Predicting abnormal laboratory blood test results in the intensive care unit using novel features based on information theory and historical conditional probability (Preprint)

Author:

Valderrama Camilo E.,Niven Daniel J.,Stelfox Henry T.,Lee JoonORCID

Abstract

BACKGROUND

Redundancy in laboratory blood tests is common in intensive care units (ICU), affecting patients' health and increasing healthcare expenses. Medical communities have made recommendations to order laboratory tests more judiciously. Wise selection can rely on modern data-driven approaches that have been shown to help identify redundant laboratory blood tests in ICUs. However, most of these works have been developed for highly selected clinical conditions such as gastrointestinal bleeding. Moreover, features based on conditional entropy and conditional probability distribution have not been used to inform the need for performing a new test.

OBJECTIVE

We aimed to address the limitations of previous works by adapting conditional entropy and conditional probability to extract features to predict abnormal laboratory blood test results.

METHODS

We used an ICU dataset collected across Alberta, Canada which included 55,689 ICU admissions from 48,672 patients with different diagnoses. We investigated conditional entropy and conditional probability-based features by comparing the performances of two machine learning approaches to predict normal and abnormal results for 18 blood laboratory tests. Approach 1 used patients' vitals, age, sex, admission diagnosis, and other laboratory blood test results as features. Approach 2 used the same features plus the new conditional entropy and conditional probability-based features.

RESULTS

Across the 18 blood laboratory tests, both Approach 1 and Approach 2 achieved a median F1-score, AUC, precision-recall AUC, and Gmean above 80%. We found that the inclusion of the new features statistically significantly improved the capacity to predict abnormal laboratory blood test results in between ten and fifteen laboratory blood tests depending on the machine learning model.

CONCLUSIONS

Our novel approach with promising prediction results can help reduce over-testing in ICUs, as well as risks for patients and healthcare systems.

CLINICALTRIAL

N/A

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3