Mining vaccine adverse events mentions from social media using Twitter as a source (Preprint)

Author:

Khademi Habibabadi Sedigheh,Delir Haghighi Pari,Burstein Frada,Buttery Jim

Abstract

BACKGROUND

Traditional monitoring for Adverse Events Following Immunisation (AEFI) relies on various established reporting systems, where there is inevitably a lag between an AEFI occurring and its potential reporting, and subsequent processing of reports. AEFI safety signal detection strives to detect AEFI as early as possible, ideally close to real-time. Monitoring social media data holds promise as a resource for this.

OBJECTIVE

1) To investigate the utility of monitoring social media for gaining early insights into vaccine safety issues, by extracting vaccine adverse event mentions (VAEM) from Twitter using natural language processing (NLP) techniques. 2) To document the NLP processes used and identify the most effective of them for successively identifying tweets that contain VAEM, with a view to defining an approach that might be applicable to other similar social media surveillance tasks.

METHODS

A VAEM-Mine method was developed that combines topic modelling with classification techniques to extract maximal VAEM posts from a vaccine-related Twitter stream, with a high degree of confidence. The approach does not require a targeted search for specific vaccine reactions, but instead identifies any VAEM post within many unrelated posts.

RESULTS

The VAEM-Mine method successively isolates vaccine adverse event mentions from the massive amount of other vaccine-related Twitter posts, achieving an F1-Score of 0.91 in the classification phase.

CONCLUSIONS

Social media can assist with detection of vaccine safety signals as a valuable complementary source for monitoring mentions of vaccine adverse events. A social media based VAEM data stream can be assessed for changes to detect possible emerging vaccine safety signals, helping to address the well-recognised limitations of passive reporting systems, including timeliness and under-reporting.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3