Integrating Clinical Decision Support Into Electronic Health Record Systems Using a Novel Platform (EvidencePoint): Developmental Study (Preprint)

Author:

Solomon JeffreyORCID,Dauber-Decker KatherineORCID,Richardson SafiyaORCID,Levy SeraORCID,Khan SundasORCID,Coleman BenjaminORCID,Persaud RupertORCID,Chelico JohnORCID,King D'ArcyORCID,Spyropoulos AlexORCID,McGinn ThomasORCID

Abstract

BACKGROUND

Through our work, we have demonstrated how clinical decision support (CDS) tools integrated into the electronic health record (EHR) assist providers in adopting evidence-based practices. This requires confronting technical challenges that result from relying on the EHR as the foundation for tool development; for example, the individual CDS tools need to be built independently for each different EHR.

OBJECTIVE

The objective of our research was to build and implement an EHR-agnostic platform for integrating CDS tools, which would remove the technical constraints inherent in relying on the EHR as the foundation and enable a single set of CDS tools that can work with any EHR.

METHODS

We developed EvidencePoint, a novel, cloud-based, EHR-agnostic CDS platform, and we will describe the development of EvidencePoint and the deployment of its initial CDS tools, which include EHR-integrated applications for clinical use cases such as prediction of hospitalization survival for patients with COVID-19, venous thromboembolism prophylaxis, and pulmonary embolism diagnosis.

RESULTS

The results below highlight the adoption of the CDS tools, the International Medical Prevention Registry on Venous Thromboembolism-D-Dimer, the Wells’ criteria, and the Northwell COVID-19 Survival (NOCOS), following development, usability testing, and implementation. The International Medical Prevention Registry on Venous Thromboembolism-D-Dimer CDS was used in 5249 patients at the 2 clinical intervention sites. The intervention group tool adoption was 77.8% (4083/5249 possible uses). For the NOCOS tool, which was designed to assist with triaging patients with COVID-19 for hospital admission in the event of constrained hospital resources, the worst-case resourcing scenario never materialized and triaging was never required. As a result, the NOCOS tool was not frequently used, though the EvidencePoint platform’s flexibility and customizability enabled the tool to be developed and deployed rapidly under the emergency conditions of the pandemic. Adoption rates for the Wells’ criteria tool will be reported in a future publication.

CONCLUSIONS

The EvidencePoint system successfully demonstrated that a flexible, user-friendly platform for hosting CDS tools outside of a specific EHR is feasible. The forthcoming results of our outcomes analyses will demonstrate the adoption rate of EvidencePoint tools as well as the impact of behavioral economics “nudges” on the adoption rate. Due to the EHR-agnostic nature of EvidencePoint, the development process for additional forms of CDS will be simpler than traditional and cumbersome IT integration approaches and will benefit from the capabilities provided by the core system of EvidencePoint.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3