A multi-methods design to understand the #longCOVID and #longhaulers conversation on Twitter (Preprint)

Author:

Santarossa SaraORCID,Rapp Ashley,Sardinas Saily,Hussein Janine,Ramirez Alex,Cassidy-Bushrow Andrea E,Cheng Philip,Yu Eunice

Abstract

BACKGROUND

The scientific community is just beginning to uncover potential long-term effects of COVID-19, and one way to start gathering information is by examining the present discourse on the topic.

OBJECTIVE

The conversation about long COVID-19 on Twitter provides insight into related public perception and personal experiences.

METHODS

A multipronged approach was used to analyze data (N = 2,500 records from Twitter) about long-COVID and from people experiencing long COVID-19. A text analysis was completed by both human coders and Netlytic, a cloud-based text and social networks analyzer. A social network analysis generated Name and Chain networks that showed connections and interactions between Twitter users.

RESULTS

Among the 2,010 tweets about long COVID-19, and 490 tweets by COVID-19 long-haulers 30,923 and 7,817 unique words were found, respectively. For booth conversation types ‘#longcovid’ and ‘covid’ were the most frequently mentioned words, however, through visually inspecting the data, words relevant to having long COVID-19 (i.e., symptoms, fatigue, pain) were more prominent in tweets by COVID-19 long-haulers. When discussing long COVID-19, the most prominent frames were ‘support’ (1090; 56.45%) and ‘research’ (435; 21.65%). In COVID-19 long haulers conversations, ‘symptoms’ (297; 61.5%) and ‘building a community’ (152; 31.5%) were the most prominent frames. The social network analysis revealed that for both tweets about long COVID-19 and tweets by COVID-19 long-haulers, networks are highly decentralized, fragmented, and loosely connected.

CONCLUSIONS

The present study provides a glimpse into the ways long COVID-19 is framed by social network users. Understanding these perspectives may help generate future patient-centered research questions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3