Recognition of Daily Activities in Adults With Wearable Inertial Sensors: Deep Learning Methods Study (Preprint)

Author:

De Ramón Fernández AlbertoORCID,Ruiz Fernández DanielORCID,García Jaén MiguelORCID,Cortell-Tormo Juan M.ORCID

Abstract

BACKGROUND

Activities of daily living (ADL) are essential for independence and personal well-being, reflecting an individual’s functional status. Impairment in executing these tasks can limit autonomy and negatively affect quality of life. The assessment of physical function during ADL is crucial for the prevention and rehabilitation of movement limitations. Still, its traditional evaluation based on subjective observation has limitations in precision and objectivity.

OBJECTIVE

The primary objective of this study is to use innovative technology, specifically wearable inertial sensors combined with artificial intelligence techniques, to objectively and accurately evaluate human performance in ADL. It is proposed to overcome the limitations of traditional methods by implementing systems that allow dynamic and noninvasive monitoring of movements during daily activities. The approach seeks to provide an effective tool for the early detection of dysfunctions and the personalization of treatment and rehabilitation plans, thus promoting an improvement in the quality of life of individuals.

METHODS

To monitor movements, wearable inertial sensors were developed, which include accelerometers and triaxial gyroscopes. The developed sensors were used to create a proprietary database with 6 movements related to the shoulder and 3 related to the back. We registered 53,165 activity records in the database (consisting of accelerometer and gyroscope measurements), which were reduced to 52,600 after processing to remove null or abnormal values. Finally, 4 deep learning (DL) models were created by combining various processing layers to explore different approaches in ADL recognition.

RESULTS

The results revealed high performance of the 4 proposed models, with levels of accuracy, precision, recall, and <i>F</i><sub>1</sub>-score ranging between 95% and 97% for all classes and an average loss of 0.10. These results indicate the great capacity of the models to accurately identify a variety of activities, with a good balance between precision and recall. Both the convolutional and bidirectional approaches achieved slightly superior results, although the bidirectional model reached convergence in a smaller number of epochs.

CONCLUSIONS

The DL models implemented have demonstrated solid performance, indicating an effective ability to identify and classify various daily activities related to the shoulder and lumbar region. These results were achieved with minimal sensorization—being noninvasive and practically imperceptible to the user—which does not affect their daily routine and promotes acceptance and adherence to continuous monitoring, thus improving the reliability of the data collected. This research has the potential to have a significant impact on the clinical evaluation and rehabilitation of patients with movement limitations, by providing an objective and advanced tool to detect key movement patterns and joint dysfunctions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3