BACKGROUND
Use of computed tomography pulmonary angiography (CTPA) in the assessment of pulmonary embolism (PE) has markedly increased over the past two decades. While this technology has improved the accuracy of radiological testing for PE, CTPA also carries the risk of substantial iatrogenic harm. Each CTPA carries a 14% risk of contrast-induced nephropathy and a lifetime malignancy risk that can be as high as 2.76%. The appropriate use of CTPA can be estimated by monitoring the CTPA yield, the percentage of tests positive for PE. This is the first study to propose and validate a computerized method for measuring the CTPA yield in the emergency department (ED).
OBJECTIVE
The objective of our study was to assess the validity of a novel computerized method of calculating the CTPA yield in the ED.
METHODS
The electronic health record databases at two tertiary care academic hospitals were queried for CTPA orders completed in the ED over 1-month periods. These visits were linked with an inpatient admission with a discharge diagnosis of PE based on the International Classification of Diseases codes. The computerized the CTPA yield was calculated as the number of CTPA orders with an associated inpatient discharge diagnosis of PE divided by the total number of orders for completed CTPA. This computerized method was then validated by 2 independent reviewers performing a manual chart review, which included reading the free-text radiology reports for each CTPA.
RESULTS
A total of 349 CTPA orders were completed during the 1-month periods at the two institutions. Of them, acute PE was diagnosed on CTPA in 28 studies, with a CTPA yield of 7.7%. The computerized method correctly identified 27 of 28 scans positive for PE. The one discordant scan was tied to a patient who was discharged directly from the ED and, as a result, never received an inpatient discharge diagnosis.
CONCLUSIONS
This is the first successful validation study of a computerized method for calculating the CTPA yield in the ED. This method for data extraction allows for an accurate determination of the CTPA yield and is more efficient than manual chart review. With this ability, health care systems can monitor the appropriate use of CTPA and the effect of interventions to reduce overuse and decrease preventable iatrogenic harm.