A Hybrid Method Based on Semi-Supervised Learning for Relation Extraction in Chinese EMRs (Preprint)

Author:

Yang ChunMing

Abstract

BACKGROUND

Extracting relations between the entities from Chinese electronic medical records(EMRs) is the key to automatically constructing medical knowledge graphs. Due to the less available labeled corpus, most of the current researches are based on shallow networks, which cannot fully capture the complex semantic features in the text of Chinese EMRs.

OBJECTIVE

In this study, a hybrid deep learning method based on semi-supervised learning is proposed to extract the entity relations from small-scale complex Chinese EMRs.

METHODS

The semantic features of sentences are extracted by residual network (ResNet) and the long dependent information is captured by bidirectional GRU (Gated Recurrent Unit). Then the attention mechanism is used to assign weights to the extracted features respectively, and the output of the two attention mechanisms is integrated for relation prediction. We adjusted the training process with manually annotated small-scale relational corpus and bootstrapping semi-supervised learning algorithm, and continuously expanded the datasets during the training process.

RESULTS

The experimental results show that the best F1-score of the proposed method on the overall relation categories reaches 89.78%, which is 13.07% higher than the baseline CNN model. The F1-score on DAP, SAP, SNAP, TeRD, TeAP, TeCP, TeRS, TeAS, TrAD, TrRD and TrAP 11 relation categories reaches 80.95%, 93.91%, 92.96%, 88.43%, 86.54%, 85.58%, 87.96%, 94.74%, 93.01%, 87.58% and 95.48%, respectively.

CONCLUSIONS

The hybrid neural network method strengthens the feature transfer and reuse between different network layers and reduces the cost of manual tagging relations. The results demonstrate that our proposed method is effective for the relation extraction in Chinese EMRs.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3