Privacy-Preserving Record Linkage of Deidentified Records Within a Public Health Surveillance System: Evaluation Study (Preprint)

Author:

Nguyen LongORCID,Stoové MarkORCID,Boyle DouglasORCID,Callander DentonORCID,McManus HamishORCID,Asselin JasonORCID,Guy RebeccaORCID,Donovan BasilORCID,Hellard MargaretORCID,El-Hayek CarolORCID

Abstract

BACKGROUND

The Australian Collaboration for Coordinated Enhanced Sentinel Surveillance (ACCESS) was established to monitor national testing and test outcomes for blood-borne viruses (BBVs) and sexually transmissible infections (STIs) in key populations. ACCESS extracts deidentified data from sentinel health services that include general practice, sexual health, and infectious disease clinics, as well as public and private laboratories that conduct a large volume of BBV/STI testing. An important attribute of ACCESS is the ability to accurately link individual-level records within and between the participating sites, as this enables the system to produce reliable epidemiological measures.

OBJECTIVE

The aim of this study was to evaluate the use of GRHANITE software in ACCESS to extract and link deidentified data from participating clinics and laboratories. GRHANITE generates irreversible hashed linkage keys based on patient-identifying data captured in the patient electronic medical records (EMRs) at the site. The algorithms to produce the data linkage keys use probabilistic linkage principles to account for variability and completeness of the underlying patient identifiers, producing up to four linkage key types per EMR. Errors in the linkage process can arise from imperfect or missing identifiers, impacting the system’s integrity. Therefore, it is important to evaluate the quality of the linkages created and evaluate the outcome of the linkage for ongoing public health surveillance.

METHODS

Although ACCESS data are deidentified, we created two gold-standard datasets where the true match status could be confirmed in order to compare against record linkage results arising from different approaches of the GRHANITE Linkage Tool. We reported sensitivity, specificity, and positive and negative predictive values where possible and estimated specificity by comparing a history of HIV and hepatitis C antibody results for linked EMRs.

RESULTS

Sensitivity ranged from 96% to 100%, and specificity was 100% when applying the GRHANITE Linkage Tool to a small gold-standard dataset of 3700 clinical medical records. Medical records in this dataset contained a very high level of data completeness by having the name, date of birth, post code, and Medicare number available for use in record linkage. In a larger gold-standard dataset containing 86,538 medical records across clinics and pathology services, with a lower level of data completeness, sensitivity ranged from 94% to 95% and estimated specificity ranged from 91% to 99% in 4 of the 6 different record linkage approaches.

CONCLUSIONS

This study’s findings suggest that the GRHANITE Linkage Tool can be used to link deidentified patient records accurately and can be confidently used for public health surveillance in systems such as ACCESS.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing Business Analytics Projects (BAP);Advances in Business Information Systems and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3