Logical Representation of Sensor Data, Preferences, and Personalized Activity Recommendations in an eCoach System: An Ontology-based Proof-of-Concept Study (Preprint)

Author:

Chatterjee AyanORCID

Abstract

UNSTRUCTURED

An automatic electronic coaching (eCoaching) can motivate individuals to lead a healthy lifestyle through early health risk prediction, customized recommendation generation, preference setting (such as, goal setting, response, and interaction), and goal evaluation. Such an eCoach system needs to collect heterogeneous health, wellness, and contextual data, and then convert them into meaningful information for health monitoring, health risk prediction, and the generation of personalized recommendations. However, data from various sources may cause a data compatibility dilemma. The proposed ontology can help in data integration, logical representation of sensory observations and customized suggestions, and discover implied knowledge. This "proof of concept (PoC)" research will help sensors, personal preferences, and recommendation data to be more organized. The research aims to design and develop an OWL-based ontology ("UiA Activity Recommendation Ontology/UiAARO") to annotate activity sensor data, contextual weather data, personal information, personal preferences, and personalized activity recommendations. The ontology was created using Protégé (V. 5.5.0) open-source software. We used the Java-based Jena Framework (V. 3.16) to build a semantic web application, which includes RDF API, OWL API, native tuple storage (TDB), and SPARQL query engine. The HermiT (V. 1.4.3.x) ontology reasoner available in Protégé 5.x has implemented the logical and structural consistency of the proposed ontology. The ontology can be visualized with OWLViz and OntoGraf, and the formal representation has been used to infer the health status of the eCoach participants with a reasoner. We have also developed an ontology verification module that behaves like a rule-based decision making (e.g., health state monitor and prediction), which can evaluate participant’s health state based on the evaluation of SPARQL query results, activity performed and predefined goal. Furthermore, the “UiAARO” has helped to represent the personalized recommendation messages beyond just “String” values, rather more meaningful with object-oriented representation. The scope of the proposed ontology is limited neither to specific sensor data nor only activity recommendations; instead, its scope can be further extended.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3