Applicability of an Automated Model and Parameter Selection in the Prediction of Screening-Level PTSD in Danish Soldiers Following Deployment: Development Study of Transferable Predictive Models Using Automated Machine Learning (Preprint)

Author:

Karstoft Karen-IngeORCID,Tsamardinos IoannisORCID,Eskelund KasperORCID,Andersen Søren BoORCID,Nissen Lars RavnborgORCID

Abstract

BACKGROUND

Posttraumatic stress disorder (PTSD) is a relatively common consequence of deployment to war zones. Early postdeployment screening with the aim of identifying those at risk for PTSD in the years following deployment will help deliver interventions to those in need but have so far proved unsuccessful.

OBJECTIVE

This study aimed to test the applicability of automated model selection and the ability of automated machine learning prediction models to transfer across cohorts and predict screening-level PTSD 2.5 years and 6.5 years after deployment.

METHODS

Automated machine learning was applied to data routinely collected 6-8 months after return from deployment from 3 different cohorts of Danish soldiers deployed to Afghanistan in 2009 (cohort 1, N=287 or N=261 depending on the timing of the outcome assessment), 2010 (cohort 2, N=352), and 2013 (cohort 3, N=232).

RESULTS

Models transferred well between cohorts. For screening-level PTSD 2.5 and 6.5 years after deployment, random forest models provided the highest accuracy as measured by area under the receiver operating characteristic curve (AUC): 2.5 years, AUC=0.77, 95% CI 0.71-0.83; 6.5 years, AUC=0.78, 95% CI 0.73-0.83. Linear models performed equally well. Military rank, hyperarousal symptoms, and total level of PTSD symptoms were highly predictive.

CONCLUSIONS

Automated machine learning provided validated models that can be readily implemented in future deployment cohorts in the Danish Defense with the aim of targeting postdeployment support interventions to those at highest risk for developing PTSD, provided the cohorts are deployed on similar missions.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3