Abstract
Background
Low- and middle-income countries face difficulties in providing adequate health care. One of the reasons is a shortage of qualified health workers. Diagnostic decision support systems are designed to aid clinicians in their work and have the potential to mitigate pressure on health care systems.
Objective
The Artificial Intelligence–Based Assessment of Health Symptoms in Tanzania (AFYA) study will evaluate the potential of an English-language artificial intelligence–based prototype diagnostic decision support system for mid-level health care practitioners in a low- or middle-income setting.
Methods
This is an observational, prospective clinical study conducted in a busy Tanzanian district hospital. In addition to usual care visits, study participants will consult a mid-level health care practitioner, who will use a prototype diagnostic decision support system, and a study physician. The accuracy and comprehensiveness of the differential diagnosis provided by the diagnostic decision support system will be evaluated against a gold-standard differential diagnosis provided by an expert panel.
Results
Patient recruitment started in October 2021. Participants were recruited directly in the waiting room of the outpatient clinic at the hospital. Data collection will conclude in May 2022. Data analysis is planned to be finished by the end of June 2022. The results will be published in a peer-reviewed journal.
Conclusions
Most diagnostic decision support systems have been developed and evaluated in high-income countries, but there is great potential for these systems to improve the delivery of health care in low- and middle-income countries. The findings of this real-patient study will provide insights based on the performance and usability of a prototype diagnostic decision support system in low- or middle-income countries.
Trial Registration
ClinicalTrials.gov NCT04958577; http://clinicaltrials.gov/ct2/show/NCT04958577
International Registered Report Identifier (IRRID)
DERR1-10.2196/34298
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献