Smartphone-Based Passive Sensing for Behavioral and Physical Monitoring in Free-Life Conditions: Technical Usability Study

Author:

Tonti SimoneORCID,Marzolini BrunellaORCID,Bulgheroni MariaORCID

Abstract

Background Smartphone use is widely spreading in society. Their embedded functions and sensors may play an important role in therapy monitoring and planning. However, the use of smartphones for intrapersonal behavioral and physical monitoring is not yet fully supported by adequate studies addressing technical reliability and acceptance. Objective The objective of this paper is to identify and discuss technical issues that may impact on the wide use of smartphones as clinical monitoring tools. The focus is on the quality of the data and transparency of the acquisition process. Methods QuantifyMyPerson is a platform for continuous monitoring of smartphone use and embedded sensors data. The platform consists of an app for data acquisition, a backend cloud server for data storage and processing, and a web-based dashboard for data management and visualization. The data processing aims to extract meaningful features for the description of daily life such as phone status, calls, app use, GPS, and accelerometer data. A total of health subjects installed the app on their smartphones, running it for 7 months. The acquired data were analyzed to assess impact on smartphone performance (ie, battery consumption and anomalies in functioning) and data integrity. Relevance of the selected features in describing changes in daily life was assessed through the computation of a k-nearest neighbors global anomaly score to detect days that differ from others. Results The effectiveness of smartphone-based monitoring depends on the acceptability and interoperability of the system as user retention and data integrity are key aspects. Acceptability was confirmed by the full transparency of the app and the absence of any conflicts with daily smartphone use. The only perceived issue was the battery consumption even though the trend of battery drain with and without the app running was comparable. Regarding interoperability, the app was successfully installed and run on several Android brands. The study shows that some smartphone manufacturers implement power-saving policies not allowing continuous sensor data acquisition and impacting integrity. Data integrity was 96% on smartphones whose power-saving policies do not impact the embedded sensor management and 84% overall. Conclusions The main technological barriers to continuous behavioral and physical monitoring (ie, battery consumption and power-saving policies of manufacturers) may be overcome. Battery consumption increase is mainly due to GPS triangulation and may be limited, while data missing because of power-saving policies are related only to periods of nonuse of the phone since the embedded sensors are reactivated by any smartphone event. Overall, smartphone-based passive sensing is fully feasible and scalable despite the Android market fragmentation.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3