Abstract
Background
Actions to improve healthy aging and delay morbidity are crucial, given the global aging population. We believe that biological age estimation can help promote the health of the general population. Biological age reflects the heterogeneity in functional status and vulnerability to disease that chronological age cannot. Thus, biological age assessment is a tool that provides an intuitively meaningful outcome for the general population, and as such, facilitates our understanding of the extent to which lifestyle can increase health span.
Objective
This interdisciplinary study intends to develop a biological age model and explore its usefulness.
Methods
The model development comprised three consecutive phases: (1) conducting a cross-sectional study to gather candidate biomarkers from 100 individuals representing normal healthy aging people (the derivation cohort); (2) estimating the biological age using principal component analysis; and (3) testing the clinical use of the model in a validation cohort of overweight adults attending a lifestyle intervention course.
Results
We completed the data collection and analysis of the cross-sectional study, and the initial results of the principal component analysis are ready. Interpretation and refinement of the model is ongoing. Recruitment to the validation cohort is forthcoming. We expect the results to be published by December 2021.
Conclusions
We expect the biological age model to be a useful indicator of disease risk and metabolic risk, and further research should focus on validating the model on a larger scale.
Trial Registration
ClinicalTrials.gov NCT03680768, https://clinicaltrials.gov/ct2/show/NCT03680768 (Phase 1 study); NCT04279366 https://clinicaltrials.gov/ct2/show/NCT04279366 (Phase 3 study).
International Registered Report Identifier (IRRID)
DERR1-10.2196/19209
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献