Methods and Measures Used to Evaluate Patient-Operated Mobile Health Interventions: Scoping Literature Review

Author:

Bradway MeghanORCID,Gabarron EliaORCID,Johansen MonikaORCID,Zanaboni PaoloORCID,Jardim PatriciaORCID,Joakimsen RagnarORCID,Pape-Haugaard LouiseORCID,Årsand EirikORCID

Abstract

Background Despite the prevalence of mobile health (mHealth) technologies and observations of their impacts on patients’ health, there is still no consensus on how best to evaluate these tools for patient self-management of chronic conditions. Researchers currently do not have guidelines on which qualitative or quantitative factors to measure or how to gather these reliable data. Objective This study aimed to document the methods and both qualitative and quantitative measures used to assess mHealth apps and systems intended for use by patients for the self-management of chronic noncommunicable diseases. Methods A scoping review was performed, and PubMed, MEDLINE, Google Scholar, and ProQuest Research Library were searched for literature published in English between January 1, 2015, and January 18, 2019. Search terms included combinations of the description of the intention of the intervention (eg, self-efficacy and self-management) and description of the intervention platform (eg, mobile app and sensor). Article selection was based on whether the intervention described a patient with a chronic noncommunicable disease as the primary user of a tool or system that would always be available for self-management. The extracted data included study design, health conditions, participants, intervention type (app or system), methods used, and measured qualitative and quantitative data. Results A total of 31 studies met the eligibility criteria. Studies were classified as either those that evaluated mHealth apps (ie, single devices; n=15) or mHealth systems (ie, more than one tool; n=17), and one study evaluated both apps and systems. App interventions mainly targeted mental health conditions (including Post-Traumatic Stress Disorder), followed by diabetes and cardiovascular and heart diseases; among the 17 studies that described mHealth systems, most involved patients diagnosed with cardiovascular and heart disease, followed by diabetes, respiratory disease, mental health conditions, cancer, and multiple illnesses. The most common evaluation method was collection of usage logs (n=21), followed by standardized questionnaires (n=18) and ad-hoc questionnaires (n=13). The most common measure was app interaction (n=19), followed by usability/feasibility (n=17) and patient-reported health data via the app (n=15). Conclusions This review demonstrates that health intervention studies are taking advantage of the additional resources that mHealth technologies provide. As mHealth technologies become more prevalent, the call for evidence includes the impacts on patients’ self-efficacy and engagement, in addition to traditional measures. However, considering the unstructured data forms, diverse use, and various platforms of mHealth, it can be challenging to select the right methods and measures to evaluate mHealth technologies. The inclusion of app usage logs, patient-involved methods, and other approaches to determine the impact of mHealth is an important step forward in health intervention research. We hope that this overview will become a catalogue of the possible ways in which mHealth has been and can be integrated into research practice.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference75 articles.

1. A history of continuous glucose monitors (CGMs) in self-monitoring of diabetes mellitus

2. Evolution of the pulse oximeter

3. Empowered citizen ‘health hackers’ who are not waiting

4. Research2Guidance20182019-05-15Berlin, GermanyResearch2GuidancemHealth Developer Economics: Connectivity in Digital Healthhttps://research2guidance.com/product/connectivity-in-digital-health/

5. Research2Guidance20172019-06-14Berlin, GermanyResearch2GuidancemHealth app economics 2017: current status and future trends in mobile healthhttps://tinyurl.com/y6urgf2x

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3