Abstract
Background
Tinnitus diagnosis poses a challenge in otolaryngology owing to an extremely complex pathogenesis, lack of effective objectification methods, and factor-affected diagnosis. There is currently a lack of explainable auxiliary diagnostic tools for tinnitus in clinical practice.
Objective
This study aims to develop a diagnostic model using an explainable artificial intelligence (AI) method to address the issue of low accuracy in tinnitus diagnosis.
Methods
In this study, a knowledge graph–based tinnitus diagnostic method was developed by combining clinical medical knowledge with electronic medical records. Electronic medical record data from 1267 patients were integrated with traditional Chinese clinical medical knowledge to construct a tinnitus knowledge graph. Subsequently, weights were introduced, which measured patient similarity in the knowledge graph based on mutual information values. Finally, a collaborative neighbor algorithm was proposed, which scored patient similarity to obtain the recommended diagnosis. We conducted 2 group experiments and 1 case derivation to explore the effectiveness of our models and compared the models with state-of-the-art graph algorithms and other explainable machine learning models.
Results
The experimental results indicate that the method achieved 99.4% accuracy, 98.5% sensitivity, 99.6% specificity, 98.7% precision, 98.6% F1-score, and 99% area under the receiver operating characteristic curve for the inference of 5 tinnitus subtypes among 253 test patients. Additionally, it demonstrated good interpretability. The topological structure of knowledge graphs provides transparency that can explain the reasons for the similarity between patients.
Conclusions
This method provides doctors with a reliable and explainable diagnostic tool that is expected to improve tinnitus diagnosis accuracy.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献