Explainable AI Method for Tinnitus Diagnosis via Neighbor-Augmented Knowledge Graph and Traditional Chinese Medicine: Development and Validation Study

Author:

Yin ZimingORCID,Kuang ZhonglingORCID,Zhang HaopengORCID,Guo YuORCID,Li TingORCID,Wu ZhengkunORCID,Wang LihuaORCID

Abstract

Background Tinnitus diagnosis poses a challenge in otolaryngology owing to an extremely complex pathogenesis, lack of effective objectification methods, and factor-affected diagnosis. There is currently a lack of explainable auxiliary diagnostic tools for tinnitus in clinical practice. Objective This study aims to develop a diagnostic model using an explainable artificial intelligence (AI) method to address the issue of low accuracy in tinnitus diagnosis. Methods In this study, a knowledge graph–based tinnitus diagnostic method was developed by combining clinical medical knowledge with electronic medical records. Electronic medical record data from 1267 patients were integrated with traditional Chinese clinical medical knowledge to construct a tinnitus knowledge graph. Subsequently, weights were introduced, which measured patient similarity in the knowledge graph based on mutual information values. Finally, a collaborative neighbor algorithm was proposed, which scored patient similarity to obtain the recommended diagnosis. We conducted 2 group experiments and 1 case derivation to explore the effectiveness of our models and compared the models with state-of-the-art graph algorithms and other explainable machine learning models. Results The experimental results indicate that the method achieved 99.4% accuracy, 98.5% sensitivity, 99.6% specificity, 98.7% precision, 98.6% F1-score, and 99% area under the receiver operating characteristic curve for the inference of 5 tinnitus subtypes among 253 test patients. Additionally, it demonstrated good interpretability. The topological structure of knowledge graphs provides transparency that can explain the reasons for the similarity between patients. Conclusions This method provides doctors with a reliable and explainable diagnostic tool that is expected to improve tinnitus diagnosis accuracy.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3