Search Term Identification Methods for Computational Health Communication: Word Embedding and Network Approach for Health Content on YouTube

Author:

Tong ChauORCID,Margolin DrewORCID,Chunara RumiORCID,Niederdeppe JeffORCID,Taylor TeairahORCID,Dunbar NatalieORCID,King Andy JORCID

Abstract

Background Common methods for extracting content in health communication research typically involve using a set of well-established queries, often names of medical procedures or diseases, that are often technical or rarely used in the public discussion of health topics. Although these methods produce high recall (ie, retrieve highly relevant content), they tend to overlook health messages that feature colloquial language and layperson vocabularies on social media. Given how such messages could contain misinformation or obscure content that circumvents official medical concepts, correctly identifying (and analyzing) them is crucial to the study of user-generated health content on social media platforms. Objective Health communication scholars would benefit from a retrieval process that goes beyond the use of standard terminologies as search queries. Motivated by this, this study aims to put forward a search term identification method to improve the retrieval of user-generated health content on social media. We focused on cancer screening tests as a subject and YouTube as a platform case study. Methods We retrieved YouTube videos using cancer screening procedures (colonoscopy, fecal occult blood test, mammogram, and pap test) as seed queries. We then trained word embedding models using text features from these videos to identify the nearest neighbor terms that are semantically similar to cancer screening tests in colloquial language. Retrieving more YouTube videos from the top neighbor terms, we coded a sample of 150 random videos from each term for relevance. We then used text mining to examine the new content retrieved from these videos and network analysis to inspect the relations between the newly retrieved videos and videos from the seed queries. Results The top terms with semantic similarities to cancer screening tests were identified via word embedding models. Text mining analysis showed that the 5 nearest neighbor terms retrieved content that was novel and contextually diverse, beyond the content retrieved from cancer screening concepts alone. Results from network analysis showed that the newly retrieved videos had at least one total degree of connection (sum of indegree and outdegree) with seed videos according to YouTube relatedness measures. Conclusions We demonstrated a retrieval technique to improve recall and minimize precision loss, which can be extended to various health topics on YouTube, a popular video-sharing social media platform. We discussed how health communication scholars can apply the technique to inspect the performance of the retrieval strategy before investing human coding resources and outlined suggestions on how such a technique can be extended to other health contexts.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3