Clinical Trial Data Sharing for COVID-19–Related Research

Author:

Dron LouisORCID,Dillman AlisonORCID,Zoratti Michael JORCID,Haggstrom JonasORCID,Mills Edward JORCID,Park Jay J HORCID

Abstract

This paper aims to provide a perspective on data sharing practices in the context of the COVID-19 pandemic. The scientific community has made several important inroads in the fight against COVID-19, and there are over 2500 clinical trials registered globally. Within the context of the rapidly changing pandemic, we are seeing a large number of trials conducted without results being made available. It is likely that a plethora of trials have stopped early, not for statistical reasons but due to lack of feasibility. Trials stopped early for feasibility are, by definition, statistically underpowered and thereby prone to inconclusive findings. Statistical power is not necessarily linear with the total sample size, and even small reductions in patient numbers or events can have a substantial impact on the research outcomes. Given the profusion of clinical trials investigating identical or similar treatments across different geographical and clinical contexts, one must also consider that the likelihood of a substantial number of false-positive and false-negative trials, emerging with the increasing overall number of trials, adds to public perceptions of uncertainty. This issue is complicated further by the evolving nature of the pandemic, wherein baseline assumptions on control group risk factors used to develop sample size calculations are far more challenging than those in the case of well-documented diseases. The standard answer to these challenges during nonpandemic settings is to assess each trial for statistical power and risk-of-bias and then pool the reported aggregated results using meta-analytic approaches. This solution simply will not suffice for COVID-19. Even with random-effects meta-analysis models, it will be difficult to adjust for the heterogeneity of different trials with aggregated reported data alone, especially given the absence of common data standards and outcome measures. To date, several groups have proposed structures and partnerships for data sharing. As COVID-19 has forced reconsideration of policies, processes, and interests, this is the time to advance scientific cooperation and shift the clinical research enterprise toward a data-sharing culture to maximize our response in the service of public health.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3