Computer-Aided Screening of Autism Spectrum Disorder: Eye-Tracking Study Using Data Visualization and Deep Learning

Author:

Cilia FedericaORCID,Carette RomualdORCID,Elbattah MahmoudORCID,Dequen GillesORCID,Guérin Jean-LucORCID,Bosche JérômeORCID,Vandromme LucORCID,Le Driant BarbaraORCID

Abstract

Background The early diagnosis of autism spectrum disorder (ASD) is highly desirable but remains a challenging task, which requires a set of cognitive tests and hours of clinical examinations. In addition, variations of such symptoms exist, which can make the identification of ASD even more difficult. Although diagnosis tests are largely developed by experts, they are still subject to human bias. In this respect, computer-assisted technologies can play a key role in supporting the screening process. Objective This paper follows on the path of using eye tracking as an integrated part of screening assessment in ASD based on the characteristic elements of the eye gaze. This study adds to the mounting efforts in using eye tracking technology to support the process of ASD screening Methods The proposed approach basically aims to integrate eye tracking with visualization and machine learning. A group of 59 school-aged participants took part in the study. The participants were invited to watch a set of age-appropriate photographs and videos related to social cognition. Initially, eye-tracking scanpaths were transformed into a visual representation as a set of images. Subsequently, a convolutional neural network was trained to perform the image classification task. Results The experimental results demonstrated that the visual representation could simplify the diagnostic task and also attained high accuracy. Specifically, the convolutional neural network model could achieve a promising classification accuracy. This largely suggests that visualizations could successfully encode the information of gaze motion and its underlying dynamics. Further, we explored possible correlations between the autism severity and the dynamics of eye movement based on the maximal information coefficient. The findings primarily show that the combination of eye tracking, visualization, and machine learning have strong potential in developing an objective tool to assist in the screening of ASD. Conclusions Broadly speaking, the approach we propose could be transferable to screening for other disorders, particularly neurodevelopmental disorders.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Human Factors and Ergonomics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3