A Reliable and Accessible Caregiving Language Model (CaLM) to Support Tools for Caregivers: Development and Evaluation Study

Author:

Parmanto BambangORCID,Aryoyudanta BayuORCID,Soekinto Timothius WilbertORCID,Setiawan I Made AgusORCID,Wang YuhanORCID,Hu HaominORCID,Saptono AndiORCID,Choi Yong KyungORCID

Abstract

Background In the United States, 1 in 5 adults currently serves as a family caregiver for an individual with a serious illness or disability. Unlike professional caregivers, family caregivers often assume this role without formal preparation or training. Thus, there is an urgent need to enhance the capacity of family caregivers to provide quality care. Leveraging technology as an educational tool or an adjunct to care is a promising approach that has the potential to enhance the learning and caregiving capabilities of family caregivers. Large language models (LLMs) can potentially be used as a foundation technology for supporting caregivers. An LLM can be categorized as a foundation model (FM), which is a large-scale model trained on a broad data set that can be adapted to a range of different domain tasks. Despite their potential, FMs have the critical weakness of “hallucination,” where the models generate information that can be misleading or inaccurate. Information reliability is essential when language models are deployed as front-line help tools for caregivers. Objective This study aimed to (1) develop a reliable caregiving language model (CaLM) by using FMs and a caregiving knowledge base, (2) develop an accessible CaLM using a small FM that requires fewer computing resources, and (3) evaluate the model’s performance compared with a large FM. Methods We developed a CaLM using the retrieval augmented generation (RAG) framework combined with FM fine-tuning for improving the quality of FM answers by grounding the model on a caregiving knowledge base. The key components of the CaLM are the caregiving knowledge base, a fine-tuned FM, and a retriever module. We used 2 small FMs as candidates for the foundation of the CaLM (LLaMA [large language model Meta AI] 2 and Falcon with 7 billion parameters) and adopted a large FM (GPT-3.5 with an estimated 175 billion parameters) as a benchmark. We developed the caregiving knowledge base by gathering various types of documents from the internet. We focused on caregivers of individuals with Alzheimer disease and related dementias. We evaluated the models’ performances using the benchmark metrics commonly used in evaluating language models and their reliability for providing accurate references with their answers. Results The RAG framework improved the performance of all FMs used in this study across all measures. As expected, the large FM performed better than the small FMs across all metrics. Interestingly, the small fine-tuned FMs with RAG performed significantly better than GPT 3.5 across all metrics. The fine-tuned LLaMA 2 with a small FM performed better than GPT 3.5 (even with RAG) in returning references with the answers. Conclusions The study shows that a reliable and accessible CaLM can be developed using small FMs with a knowledge base specific to the caregiving domain.

Publisher

JMIR Publications Inc.

Reference61 articles.

1. Caregiving in the United States 2020AARP2023-11-16https://www.aarp.org/pri/topics/ltss/family-caregiving/caregiving-in-the-united-states.html

2. Research Priorities in Family Caregiving: Process and Outcomes of a Conference on Family-Centered Care Across the Trajectory of Serious Illness

3. Spinal Cord Injury

4. HOME ALONE REVISITED: FAMILY CAREGIVERS PROVIDING COMPLEX CARE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3