Abstract
Background
Collecting information on adverse events following immunization from as many sources as possible is critical for promptly identifying potential safety concerns and taking appropriate actions. Febrile convulsions are recognized as an important potential reaction to vaccination in children aged <6 years.
Objective
The primary aim of this study was to evaluate the performance of natural language processing techniques and machine learning (ML) models for the rapid detection of febrile convulsion presentations in emergency departments (EDs), especially with respect to the minimum training data requirements to obtain optimum model performance. In addition, we examined the deployment requirements for a ML model to perform real-time monitoring of ED triage notes.
Methods
We developed a pattern matching approach as a baseline and evaluated ML models for the classification of febrile convulsions in ED triage notes to determine both their training requirements and their effectiveness in detecting febrile convulsions. We measured their performance during training and then compared the deployed models’ result on new incoming ED data.
Results
Although the best standard neural networks had acceptable performance and were low-resource models, transformer-based models outperformed them substantially, justifying their ongoing deployment.
Conclusions
Using natural language processing, particularly with the use of large language models, offers significant advantages in syndromic surveillance. Large language models make highly effective classifiers, and their text generation capacity can be used to enhance the quality and diversity of training data.