Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models

Author:

Dandala BharathORCID,Joopudi VenkataORCID,Tsou Ching-HueiORCID,Liang Jennifer JORCID,Suryanarayanan ParthasarathyORCID

Abstract

Background An adverse drug event (ADE) is commonly defined as “an injury resulting from medical intervention related to a drug.” Providing information related to ADEs and alerting caregivers at the point of care can reduce the risk of prescription and diagnostic errors and improve health outcomes. ADEs captured in structured data in electronic health records (EHRs) as either coded problems or allergies are often incomplete, leading to underreporting. Therefore, it is important to develop capabilities to process unstructured EHR data in the form of clinical notes, which contain a richer documentation of a patient’s ADE. Several natural language processing (NLP) systems have been proposed to automatically extract information related to ADEs. However, the results from these systems showed that significant improvement is still required for the automatic extraction of ADEs from clinical notes. Objective This study aims to improve the automatic extraction of ADEs and related information such as drugs, their attributes, and reason for administration from the clinical notes of patients. Methods This research was conducted using discharge summaries from the Medical Information Mart for Intensive Care III (MIMIC-III) database obtained through the 2018 National NLP Clinical Challenges (n2c2) annotated with drugs, drug attributes (ie, strength, form, frequency, route, dosage, duration), ADEs, reasons, and relations between drugs and other entities. We developed a deep learning–based system for extracting these drug-centric concepts and relations simultaneously using a joint method enhanced with contextualized embeddings, a position-attention mechanism, and knowledge representations. The joint method generated different sentence representations for each drug, which were then used to extract related concepts and relations simultaneously. Contextualized representations trained on the MIMIC-III database were used to capture context-sensitive meanings of words. The position-attention mechanism amplified the benefits of the joint method by generating sentence representations that capture long-distance relations. Knowledge representations were obtained from graph embeddings created using the US Food and Drug Administration Adverse Event Reporting System database to improve relation extraction, especially when contextual clues were insufficient. Results Our system achieved new state-of-the-art results on the n2c2 data set, with significant improvements in recognizing crucial drug−reason (F1=0.650 versus F1=0.579) and drug−ADE (F1=0.490 versus F1=0.476) relations. Conclusions This study presents a system for extracting drug-centric concepts and relations that outperformed current state-of-the-art results and shows that contextualized embeddings, position-attention mechanisms, and knowledge graph embeddings effectively improve deep learning–based concepts and relation extraction. This study demonstrates the potential for deep learning–based methods to help extract real-world evidence from unstructured patient data for drug safety surveillance.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing domain adaptation in adverse drug event extraction on real-world breast cancer records;International Journal of Medical Informatics;2024-11

2. Relation Extraction;Cognitive Informatics in Biomedicine and Healthcare;2024

3. MC-DRE: Multi-Aspect Cross Integration for Drug Event/Entity Extraction;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

4. Chapter 4. Semantic Web Machine Learning Systems: An Analysis of System Patterns;Frontiers in Artificial Intelligence and Applications;2023-07-21

5. Combining Machine Learning and Semantic Web: A Systematic Mapping Study;ACM Computing Surveys;2023-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3