Cross-Cutting mHealth Behavior Change Techniques to Support Treatment Adherence and Self-Management of Complex Medical Conditions: Systematic Review

Author:

Eaton Cyd KORCID,McWilliams EmmaORCID,Yablon DanaORCID,Kesim IremORCID,Ge ReneeORCID,Mirus KarissaORCID,Sconiers TakeeraORCID,Donkoh AlfredORCID,Lawrence MelanieORCID,George CynthiaORCID,Morrison Mary LeighORCID,Muther EmilyORCID,Oates Gabriela RORCID,Sathe MeghanaORCID,Sawicki Gregory SORCID,Snell CarolynORCID,Riekert KristinORCID

Abstract

Abstract Background Mobile health (mHealth) interventions have immense potential to support disease self-management for people with complex medical conditions following treatment regimens that involve taking medicine and other self-management activities. However, there is no consensus on what discrete behavior change techniques (BCTs) should be used in an effective adherence and self-management–promoting mHealth solution for any chronic illness. Reviewing the extant literature to identify effective, cross-cutting BCTs in mHealth interventions for adherence and self-management promotion could help accelerate the development, evaluation, and dissemination of behavior change interventions with potential generalizability across complex medical conditions. Objective This study aimed to identify cross-cutting, mHealth-based BCTs to incorporate into effective mHealth adherence and self-management interventions for people with complex medical conditions, by systematically reviewing the literature across chronic medical conditions with similar adherence and self-management demands. Methods A registered systematic review was conducted to identify published evaluations of mHealth adherence and self-management interventions for chronic medical conditions with complex adherence and self-management demands. The methodological characteristics and BCTs in each study were extracted using a standard data collection form. Results A total of 122 studies were reviewed; the majority involved people with type 2 diabetes (28/122, 23%), asthma (27/122, 22%), and type 1 diabetes (19/122, 16%). mHealth interventions rated as having a positive outcome on adherence and self-management used more BCTs (mean 4.95, SD 2.56) than interventions with no impact on outcomes (mean 3.57, SD 1.95) or those that used >1 outcome measure or analytic approach (mean 3.90, SD 1.93; P=.02). The following BCTs were associated with positive outcomes: self-monitoring outcomes of behavior (39/59, 66%), feedback on outcomes of behavior (34/59, 58%), self-monitoring of behavior (34/59, 58%), feedback on behavior (29/59, 49%), credible source (24/59, 41%), and goal setting (behavior; 14/59, 24%). In adult-only samples, prompts and cues were associated with positive outcomes (34/45, 76%). In adolescent and young adult samples, information about health consequences (1/4, 25%), problem-solving (1/4, 25%), and material reward (behavior; 2/4, 50%) were associated with positive outcomes. In interventions explicitly targeting medicine taking, prompts and cues (25/33, 76%) and credible source (13/33, 39%) were associated with positive outcomes. In interventions focused on self-management and other adherence targets, instruction on how to perform the behavior (8/26, 31%), goal setting (behavior; 8/26, 31%), and action planning (5/26, 19%) were associated with positive outcomes. Conclusions To support adherence and self-management in people with complex medical conditions, mHealth tools should purposefully incorporate effective and developmentally appropriate BCTs. A cross-cutting approach to BCT selection could accelerate the development of much-needed mHealth interventions for target populations, although mHealth intervention developers should continue to consider the unique needs of the target population when designing these tools.

Publisher

JMIR Publications Inc.

Reference34 articles.

1. WHO Global Observatory for eHealth. mHealth: new horizons for health through mobile technologies: second global survey on eHealth. World Health Organization. 2011. URL: https://iris.who.int/handle/10665/44607 [Accessed 23-03-2023]

2. Medication adherence apps: review and content analysis;Ahmed;JMIR Mhealth Uhealth

3. mHealth apps using behavior change techniques to self-report data: systematic review;Aguiar;JMIR Mhealth Uhealth

4. Content and usability evaluation of medication adherence mobile applications for use in pediatrics;Carmody;J Pediatr Psychol

5. Behavior change techniques in apps for medication adherence: a content analysis;Morrissey;Am J Prev Med

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3