Abstract
Background
Information related to patient medication is crucial for health care; however, up to 80% of the information resides solely in unstructured text. Manual extraction is difficult and time-consuming, and there is not a lot of research on natural language processing extracting medical information from unstructured text from French corpora.
Objective
We aimed to develop a system to extract medication-related information from clinical text written in French.
Methods
We developed a hybrid system combining an expert rule–based system, contextual word embedding (embedding for language model) trained on clinical notes, and a deep recurrent neural network (bidirectional long short term memory–conditional random field). The task consisted of extracting drug mentions and their related information (eg, dosage, frequency, duration, route, condition). We manually annotated 320 clinical notes from a French clinical data warehouse to train and evaluate the model. We compared the performance of our approach to those of standard approaches: rule-based or machine learning only and classic word embeddings. We evaluated the models using token-level recall, precision, and F-measure.
Results
The overall F-measure was 89.9% (precision 90.8; recall: 89.2) when combining expert rules and contextualized embeddings, compared to 88.1% (precision 89.5; recall 87.2) without expert rules or contextualized embeddings. The F-measures for each category were 95.3% for medication name, 64.4% for drug class mentions, 95.3% for dosage, 92.2% for frequency, 78.8% for duration, and 62.2% for condition of the intake.
Conclusions
Associating expert rules, deep contextualized embedding, and deep neural networks improved medication information extraction. Our results revealed a synergy when associating expert knowledge and latent knowledge.
Subject
Health Information Management,Health Informatics
Reference54 articles.
1. Les dépenses de santé en 2017 - résultats des comptes de la santé - édition 2018Direction de la recherche, des études, de l'évaluation et des statistiques20182019-10-01https://drees.solidarites-sante.gouv.fr/publications/panoramas-de-la-drees/les-depenses-de-sante-en-2017-resultats-des-comptes-de-la-sante
2. Assessing the Feasibility of Using an Adverse Drug Reaction Preventability Scale in Clinical Practice
3. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献