Preliminary Attainability Assessment of Real-World Data for Answering Major Clinical Research Questions in Breast Cancer Brain Metastasis: Framework Development and Validation Study

Author:

Kim Min JeongORCID,Kim Hyo JungORCID,Kang DanbeeORCID,Ahn Hee KyungORCID,Shin Soo-YongORCID,Park SeriORCID,Cho JuheeORCID,Park Yeon HeeORCID

Abstract

Background In recent decades, real-world evidence (RWE) in oncology has rapidly gained traction for its potential to answer clinical questions that cannot be directly addressed by randomized clinical trials. Integrating real-world data (RWD) into clinical research promises to contribute to more sustainable research designs, including extension, augmentation, enrichment, and pragmatic designs. Nevertheless, clinical research using RWD is still limited because of concerns regarding the shortage of best practices for extracting, harmonizing, and analyzing RWD. In particular, pragmatic screening methods to determine whether the content of a data source is sufficient to answer the research questions before conducting the research with RWD have not yet been established. Objective We examined the PAR (Preliminary Attainability Assessment of Real-World Data) framework and assessed its utility in breast cancer brain metastasis (BCBM), which has an unmet medical need for data attainability screening at the preliminary step of observational studies that use RWD. Methods The PAR framework was proposed to assess data attainability from a particular data source during the early research process. The PAR framework has four sequential stages, starting with clinical question clarification: (1) operational definition of variables, (2) data matching (structural/semantic), (3) data screening and extraction, and (4) data attainability diagramming. We identified 5 clinical questions to be used for PAR framework evaluation through interviews and validated them with a survey of breast cancer experts. We used the Samsung Medical Center Breast Cancer Registry, a hospital-based real-time registry implemented in March 2021, leveraging the institution’s anonymized and deidentified clinical data warehouse platform. The number of breast cancer patients in the registry was 45,129; it covered the period from June 1995 to December 2021. The registry consists of 24 base data marts that represent disease-specific breast cancer characteristics and care pathways. The outcomes included screening results of the clinical questions via the PAR framework and a procedural diagram of data attainability for each research question. Results Data attainability was tested for study feasibility according to the PAR framework with 5 clinical questions for BCBM. We obtained data sets that were sufficient to conduct studies with 4 of 5 clinical questions. The research questions stratified into 3 types when we developed data fields for clearly defined research variables. In the first, only 1 question could be answered using direct data variables. In the second, the other 3 questions required surrogate definitions that combined data variables. In the third, the question turned out to be not feasible for conducting further analysis. Conclusions The adoption of the PAR framework was associated with more efficient preliminary clinical research using RWD from BCBM. Furthermore, this framework helped accelerate RWE generation through clinical research by enhancing transparency and reproducibility and lowering the entry barrier for clinical researchers.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3