Investigation of Deepfake Voice Detection Using Speech Pause Patterns: Algorithm Development and Validation

Author:

Kulangareth Nikhil ValsanORCID,Kaufman JayceeORCID,Oreskovic JessicaORCID,Fossat YanORCID

Abstract

Background The digital era has witnessed an escalating dependence on digital platforms for news and information, coupled with the advent of “deepfake” technology. Deepfakes, leveraging deep learning models on extensive data sets of voice recordings and images, pose substantial threats to media authenticity, potentially leading to unethical misuse such as impersonation and the dissemination of false information. Objective To counteract this challenge, this study aims to introduce the concept of innate biological processes to discern between authentic human voices and cloned voices. We propose that the presence or absence of certain perceptual features, such as pauses in speech, can effectively distinguish between cloned and authentic audio. Methods A total of 49 adult participants representing diverse ethnic backgrounds and accents were recruited. Each participant contributed voice samples for the training of up to 3 distinct voice cloning text-to-speech models and 3 control paragraphs. Subsequently, the cloning models generated synthetic versions of the control paragraphs, resulting in a data set consisting of up to 9 cloned audio samples and 3 control samples per participant. We analyzed the speech pauses caused by biological actions such as respiration, swallowing, and cognitive processes. Five audio features corresponding to speech pause profiles were calculated. Differences between authentic and cloned audio for these features were assessed, and 5 classical machine learning algorithms were implemented using these features to create a prediction model. The generalization capability of the optimal model was evaluated through testing on unseen data, incorporating a model-naive generator, a model-naive paragraph, and model-naive participants. Results Cloned audio exhibited significantly increased time between pauses (P<.001), decreased variation in speech segment length (P=.003), increased overall proportion of time speaking (P=.04), and decreased rates of micro- and macropauses in speech (both P=.01). Five machine learning models were implemented using these features, with the AdaBoost model demonstrating the highest performance, achieving a 5-fold cross-validation balanced accuracy of 0.81 (SD 0.05). Other models included support vector machine (balanced accuracy 0.79, SD 0.03), random forest (balanced accuracy 0.78, SD 0.04), logistic regression, and decision tree (balanced accuracies 0.76, SD 0.10 and 0.72, SD 0.06). When evaluating the optimal AdaBoost model, it achieved an overall test accuracy of 0.79 when predicting unseen data. Conclusions The incorporation of perceptual, biological features into machine learning models demonstrates promising results in distinguishing between authentic human voices and cloned audio.

Publisher

JMIR Publications Inc.

Reference20 articles.

1. News in an online world: The need for an “automatic crap detector”

2. Face/Off: Changing the face of movies with deepfakes

3. GoodfellowIPouget-AbadieJMirzaMXuBWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial nets2014Neural Information Processing SystemsDecember 8-11, 2014Montreal, Canada

4. Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3