Is Boundary Annotation Necessary? Evaluating Boundary-Free Approaches to Improve Clinical Named Entity Annotation Efficiency: Case Study

Author:

Herman Bernardim Andrade GabrielORCID,Yada ShuntaroORCID,Aramaki EijiORCID

Abstract

Background Named entity recognition (NER) is a fundamental task in natural language processing. However, it is typically preceded by named entity annotation, which poses several challenges, especially in the clinical domain. For instance, determining entity boundaries is one of the most common sources of disagreements between annotators due to questions such as whether modifiers or peripheral words should be annotated. If unresolved, these can induce inconsistency in the produced corpora, yet, on the other hand, strict guidelines or adjudication sessions can further prolong an already slow and convoluted process. Objective The aim of this study is to address these challenges by evaluating 2 novel annotation methodologies, lenient span and point annotation, aiming to mitigate the difficulty of precisely determining entity boundaries. Methods We evaluate their effects through an annotation case study on a Japanese medical case report data set. We compare annotation time, annotator agreement, and the quality of the produced labeling and assess the impact on the performance of an NER system trained on the annotated corpus. Results We saw significant improvements in the labeling process efficiency, with up to a 25% reduction in overall annotation time and even a 10% improvement in annotator agreement compared to the traditional boundary-strict approach. However, even the best-achieved NER model presented some drop in performance compared to the traditional annotation methodology. Conclusions Our findings demonstrate a balance between annotation speed and model performance. Although disregarding boundary information affects model performance to some extent, this is counterbalanced by significant reductions in the annotator’s workload and notable improvements in the speed of the annotation process. These benefits may prove valuable in various applications, offering an attractive compromise for developers and researchers.

Publisher

JMIR Publications Inc.

Reference40 articles.

1. Challenges and opportunities beyond structured data in analysis of electronic health records

2. GomesICorreiaRRibeiroJFreitasJEffort estimation in named entity tagging tasksProceedings of the 12th Conference on Language Resources and Evaluation202005LREC 2020May 11-16, 2020Marseille, France998306

3. Named Entity Recognition: Fallacies, challenges and opportunities

4. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3