Privacy Preservation in Patient Information Exchange Systems Based on Blockchain: System Design Study

Author:

­Lee SejongORCID,Kim JaehyeonORCID,Kwon YongseokORCID,Kim TeasungORCID,Cho SunghyunORCID

Abstract

Background With the increasing sophistication of the medical industry, various advanced medical services such as medical artificial intelligence, telemedicine, and personalized health care services have emerged. The demand for medical data is also rapidly increasing today because advanced medical services use medical data such as user data and electronic medical records (EMRs) to provide services. As a result, health care institutions and medical practitioners are researching various mechanisms and tools to feed medical data into their systems seamlessly. However, medical data contain sensitive personal information of patients. Therefore, ensuring security while meeting the demand for medical data is a very important problem in the information age for which a solution is required. Objective Our goal is to design a blockchain-based decentralized patient information exchange (PIE) system that can safely and efficiently share EMRs. The proposed system preserves patients’ privacy in the EMRs through a medical information exchange process that includes data encryption and access control. Methods We propose a blockchain-based EMR-sharing system that allows patients to manage their EMRs scattered across multiple hospitals and share them with other users. Our PIE system protects the patient’s EMR from security threats such as counterfeiting and privacy attacks during data sharing. In addition, it provides scalability by using distributed data-sharing methods to quickly share an EMR, regardless of its size or type. We implemented simulation models using Hyperledger Fabric, an open source blockchain framework. Results We performed a simulation of the EMR-sharing process and compared it with previous works on blockchain-based medical systems to check the proposed system’s performance. During the simulation, we found that it takes an average of 0.01014 (SD 0.0028) seconds to download 1 MB of EMR in our proposed PIE system. Moreover, it has been confirmed that data can be freely shared with other users regardless of the size or format of the data to be transmitted through the distributed data-sharing technique using the InterPlanetary File System. We conducted a security analysis to check whether the proposed security mechanism can effectively protect users of the EMR-sharing system from security threats such as data forgery or unauthorized access, and we found that the distributed ledger structure and re-encryption–based data encryption method can effectively protect users’ EMRs from forgery and privacy leak threats and provide data integrity. Conclusions Blockchain is a distributed ledger technology that provides data integrity to enable patient-centered health information exchange and access control. PIE systems integrate and manage fragmented patient EMRs through blockchain and protect users from security threats during the data exchange process among users. To increase safety and efficiency in the EMR-sharing process, we used access control using security levels, data encryption based on re-encryption, and a distributed data-sharing scheme.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference68 articles.

1. ParasrampuriaSHenryJHospitals' use of electronic health records data, 2015-2017ONC Data Brief (46)20192022-02-17https://www.healthit.gov/sites/default/files/page/2019-04/AHAEHRUseDataBrief.pdf

2. 'Non-federal Acute Care Hospital Health IT Adoption and Use,' Health IT DashboardOffice of the National Coordinator for Health Information Technology20192022-02-17http://dashboard.healthit.gov/apps/hospital-health-it-adoption.php

3. A review of PHR, EMR and EHR integration: A more personalized healthcare and public health policy

4. Electronic medical record systems: decision support examination framework for individual, security and privacy concerns using multi-perspective analysis

5. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3