The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review

Author:

Istasy PaulORCID,Lee Wen ShenORCID,Iansavichene AllaORCID,Upshur RossORCID,Gyawali BishalORCID,Burkell JacquelynORCID,Sadikovic BekimORCID,Lazo-Langner AlejandroORCID,Chin-Yee BenjaminORCID

Abstract

Background The field of oncology is at the forefront of advances in artificial intelligence (AI) in health care, providing an opportunity to examine the early integration of these technologies in clinical research and patient care. Hope that AI will revolutionize health care delivery and improve clinical outcomes has been accompanied by concerns about the impact of these technologies on health equity. Objective We aimed to conduct a scoping review of the literature to address the question, “What are the current and potential impacts of AI technologies on health equity in oncology?” Methods Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines for scoping reviews, we systematically searched MEDLINE and Embase electronic databases from January 2000 to August 2021 for records engaging with key concepts of AI, health equity, and oncology. We included all English-language articles that engaged with the 3 key concepts. Articles were analyzed qualitatively for themes pertaining to the influence of AI on health equity in oncology. Results Of the 14,011 records, 133 (0.95%) identified from our review were included. We identified 3 general themes in the literature: the use of AI to reduce health care disparities (58/133, 43.6%), concerns surrounding AI technologies and bias (16/133, 12.1%), and the use of AI to examine biological and social determinants of health (55/133, 41.4%). A total of 3% (4/133) of articles focused on many of these themes. Conclusions Our scoping review revealed 3 main themes on the impact of AI on health equity in oncology, which relate to AI’s ability to help address health disparities, its potential to mitigate or exacerbate bias, and its capability to help elucidate determinants of health. Gaps in the literature included a lack of discussion of ethical challenges with the application of AI technologies in low- and middle-income countries, lack of discussion of problems of bias in AI algorithms, and a lack of justification for the use of AI technologies over traditional statistical methods to address specific research questions in oncology. Our review highlights a need to address these gaps to ensure a more equitable integration of AI in cancer research and clinical practice. The limitations of our study include its exploratory nature, its focus on oncology as opposed to all health care sectors, and its analysis of solely English-language articles.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference202 articles.

1. Chin-YeeBUpshurRThe impact of artificial intelligence on clinical judgment: a briefing documentAMS Healthcare20192022-03-06https://www.ams-inc.on.ca/wp-content/uploads/2020/02/The-Impact-of-AI-on-clinical-judgement.pdf

2. ChuiMManyikaJBughinJBig Data's Potential for BusinessesMcKinsey Global Institute20112022-03-05

3. Artificial intelligence for clinical oncology

4. Artificial intelligence in oncology: current applications and future perspectives

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3