Building Dual AI Models and Nomograms Using Noninvasive Parameters for Aiding Male Bladder Outlet Obstruction Diagnosis and Minimizing the Need for Invasive Video-Urodynamic Studies: Development and Validation Study

Author:

Tsai Chung-YouORCID,Tian Jing-HuiORCID,Lee Chien-ChengORCID,Kuo Hann-ChorngORCID

Abstract

Background Diagnosing underlying causes of nonneurogenic male lower urinary tract symptoms associated with bladder outlet obstruction (BOO) is challenging. Video-urodynamic studies (VUDS) and pressure-flow studies (PFS) are both invasive diagnostic methods for BOO. VUDS can more precisely differentiate etiologies of male BOO, such as benign prostatic obstruction, primary bladder neck obstruction, and dysfunctional voiding, potentially outperforming PFS. Objective These examinations’ invasive nature highlights the need for developing noninvasive predictive models to facilitate BOO diagnosis and reduce the necessity for invasive procedures. Methods We conducted a retrospective study with a cohort of men with medication-refractory, nonneurogenic lower urinary tract symptoms suspected of BOO who underwent VUDS from 2001 to 2022. In total, 2 BOO predictive models were developed—1 based on the International Continence Society’s definition (International Continence Society–defined bladder outlet obstruction; ICS-BOO) and the other on video-urodynamic studies–diagnosed bladder outlet obstruction (VBOO). The patient cohort was randomly split into training and test sets for analysis. A total of 6 machine learning algorithms, including logistic regression, were used for model development. During model development, we first performed development validation using repeated 5-fold cross-validation on the training set and then test validation to assess the model’s performance on an independent test set. Both models were implemented as paper-based nomograms and integrated into a web-based artificial intelligence prediction tool to aid clinical decision-making. Results Among 307 patients, 26.7% (n=82) met the ICS-BOO criteria, while 82.1% (n=252) were diagnosed with VBOO. The ICS-BOO prediction model had a mean area under the receiver operating characteristic curve (AUC) of 0.74 (SD 0.09) and mean accuracy of 0.76 (SD 0.04) in development validation and AUC and accuracy of 0.86 and 0.77, respectively, in test validation. The VBOO prediction model yielded a mean AUC of 0.71 (SD 0.06) and mean accuracy of 0.77 (SD 0.06) internally, with AUC and accuracy of 0.72 and 0.76, respectively, externally. When both models’ predictions are applied to the same patient, their combined insights can significantly enhance clinical decision-making and simplify the diagnostic pathway. By the dual-model prediction approach, if both models positively predict BOO, suggesting all cases actually resulted from medication-refractory primary bladder neck obstruction or benign prostatic obstruction, surgical intervention may be considered. Thus, VUDS might be unnecessary for 100 (32.6%) patients. Conversely, when ICS-BOO predictions are negative but VBOO predictions are positive, indicating varied etiology, VUDS rather than PFS is advised for precise diagnosis and guiding subsequent therapy, accurately identifying 51.1% (47/92) of patients for VUDS. Conclusions The 2 machine learning models predicting ICS-BOO and VBOO, based on 6 noninvasive clinical parameters, demonstrate commendable discrimination performance. Using the dual-model prediction approach, when both models predict positively, VUDS may be avoided, assisting in male BOO diagnosis and reducing the need for such invasive procedures.

Publisher

JMIR Publications Inc.

Reference31 articles.

1. The American Urological Association Symptom Index for Benign Prostatic Hyperplasia

2. EAU Guidelines on the Assessment of Non-neurogenic Male Lower Urinary Tract Symptoms including Benign Prostatic Obstruction

3. CornuJNGacciMHashimHEAU guidelines on non-neurogenic male lower urinary tract symptoms (LUTS), including benign prostatic obstruction (BPO)20232023-12-02https://uroweb.org/guidelines/management-of-non-neurogenic-male-luts

4. Videourodynamic findings of lower urinary tract dysfunctions in men with persistent storage lower urinary tract symptoms after medical treatment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3