Identifying Weekly Trajectories of Pain Severity Using Daily Data From an mHealth Study: Cluster Analysis

Author:

Little Claire LORCID,Schultz David MORCID,House ThomasORCID,Dixon William GORCID,McBeth JohnORCID

Abstract

Background People with chronic pain experience variability in their trajectories of pain severity. Previous studies have explored pain trajectories by clustering sparse data; however, to understand daily pain variability, there is a need to identify clusters of weekly trajectories using daily pain data. Between-week variability can be explored by quantifying the week-to-week movement between these clusters. We propose that future work can use clusters of pain severity in a forecasting model for short-term (eg, daily fluctuations) and longer-term (eg, weekly patterns) variability. Specifically, future work can use clusters of weekly trajectories to predict between-cluster movement and within-cluster variability in pain severity. Objective This study aims to understand clusters of common weekly patterns as a first stage in developing a pain-forecasting model. Methods Data from a population-based mobile health study were used to compile weekly pain trajectories (n=21,919) that were then clustered using a k-medoids algorithm. Sensitivity analyses tested the impact of assumptions related to the ordinal and longitudinal structure of the data. The characteristics of people within clusters were examined, and a transition analysis was conducted to understand the movement of people between consecutive weekly clusters. Results Four clusters were identified representing trajectories of no or low pain (1714/21,919, 7.82%), mild pain (8246/21,919, 37.62%), moderate pain (8376/21,919, 38.21%), and severe pain (3583/21,919, 16.35%). Sensitivity analyses confirmed the 4-cluster solution, and the resulting clusters were similar to those in the main analysis, with at least 85% of the trajectories belonging to the same cluster as in the main analysis. Male participants spent longer (participant mean 7.9, 95% bootstrap CI 6%-9.9%) in the no or low pain cluster than female participants (participant mean 6.5, 95% bootstrap CI 5.7%-7.3%). Younger people (aged 17-24 y) spent longer (participant mean 28.3, 95% bootstrap CI 19.3%-38.5%) in the severe pain cluster than older people (aged 65-86 y; participant mean 9.8, 95% bootstrap CI 7.7%-12.3%). People with fibromyalgia (participant mean 31.5, 95% bootstrap CI 28.5%-34.4%) and neuropathic pain (participant mean 31.1, 95% bootstrap CI 27.3%-34.9%) spent longer in the severe pain cluster than those with other conditions, and people with rheumatoid arthritis spent longer (participant mean 7.8, 95% bootstrap CI 6.1%-9.6%) in the no or low pain cluster than those with other conditions. There were 12,267 pairs of consecutive weeks that contributed to the transition analysis. The empirical percentage remaining in the same cluster across consecutive weeks was 65.96% (8091/12,267). When movement between clusters occurred, the highest percentage of movement was to an adjacent cluster. Conclusions The clusters of pain severity identified in this study provide a parsimonious description of the weekly experiences of people with chronic pain. These clusters could be used for future study of between-cluster movement and within-cluster variability to develop accurate and stakeholder-informed pain-forecasting tools.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3