Pediatric Cancer Communication on Twitter: Natural Language Processing and Qualitative Content Analysis

Author:

Lau NancyORCID,Zhao XinORCID,O'Daffer AlisonORCID,Weissman HannahORCID,Barton KrystaORCID

Abstract

Background During the COVID-19 pandemic, Twitter (recently rebranded as “X”) was the most widely used social media platform with over 2 million cancer-related tweets. The increasing use of social media among patients and family members, providers, and organizations has allowed for novel methods of studying cancer communication. Objective This study aimed to examine pediatric cancer–related tweets to capture the experiences of patients and survivors of cancer, their caregivers, medical providers, and other stakeholders. We assessed the public sentiment and content of tweets related to pediatric cancer over a time period representative of the COVID-19 pandemic. Methods All English-language tweets related to pediatric cancer posted from December 11, 2019, to May 7, 2022, globally, were obtained using the Twitter application programming interface. Sentiment analyses were computed based on Bing, AFINN, and NRC lexicons. We conducted a supplemental nonlexicon-based sentiment analysis with ChatGPT (version 3.0) to validate our findings with a random subset of 150 tweets. We conducted a qualitative content analysis to manually code the content of a random subset of 800 tweets. Results A total of 161,135 unique tweets related to pediatric cancer were identified. Sentiment analyses showed that there were more positive words than negative words. Via the Bing lexicon, the most common positive words were support, love, amazing, heaven, and happy, and the most common negative words were grief, risk, hard, abuse, and miss. Via the NRC lexicon, most tweets were categorized under sentiment types of positive, trust, and joy. Overall positive sentiment was consistent across lexicons and confirmed with supplemental ChatGPT (version 3.0) analysis. Percent agreement between raters for qualitative coding was 91%, and the top 10 codes were awareness, personal experiences, research, caregiver experiences, patient experiences, policy and the law, treatment, end of life, pharmaceuticals and drugs, and survivorship. Qualitative content analysis showed that Twitter users commonly used the social media platform to promote public awareness of pediatric cancer and to share personal experiences with pediatric cancer from the perspective of patients or survivors and their caregivers. Twitter was frequently used for health knowledge dissemination of research findings and federal policies that support treatment and affordable medical care. Conclusions Twitter may serve as an effective means for researchers to examine pediatric cancer communication and public sentiment around the globe. Despite the public mental health crisis during the COVID-19 pandemic, overall sentiments of pediatric cancer–related tweets were positive. Content of pediatric cancer tweets focused on health and treatment information, social support, and raising awareness of pediatric cancer.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3