Using General-purpose Sentiment Lexicons for Suicide Risk Assessment in Electronic Health Records: Corpus-Based Analysis

Author:

Bittar AndréORCID,Velupillai SumithraORCID,Roberts AngusORCID,Dutta RinaORCID

Abstract

Background Suicide is a serious public health issue, accounting for 1.4% of all deaths worldwide. Current risk assessment tools are reported as performing little better than chance in predicting suicide. New methods for studying dynamic features in electronic health records (EHRs) are being increasingly explored. One avenue of research involves using sentiment analysis to examine clinicians’ subjective judgments when reporting on patients. Several recent studies have used general-purpose sentiment analysis tools to automatically identify negative and positive words within EHRs to test correlations between sentiment extracted from the texts and specific medical outcomes (eg, risk of suicide or in-hospital mortality). However, little attention has been paid to analyzing the specific words identified by general-purpose sentiment lexicons when applied to EHR corpora. Objective This study aims to quantitatively and qualitatively evaluate the coverage of six general-purpose sentiment lexicons against a corpus of EHR texts to ascertain the extent to which such lexical resources are fit for use in suicide risk assessment. Methods The data for this study were a corpus of 198,451 EHR texts made up of two subcorpora drawn from a 1:4 case-control study comparing clinical notes written over the period leading up to a suicide attempt (cases, n=2913) with those not preceding such an attempt (controls, n=14,727). We calculated word frequency distributions within each subcorpus to identify representative keywords for both the case and control subcorpora. We quantified the relative coverage of the 6 lexicons with respect to this list of representative keywords in terms of weighted precision, recall, and F score. Results The six lexicons achieved reasonable precision (0.53-0.68) but very low recall (0.04-0.36). Many of the most representative keywords in the suicide-related (case) subcorpus were not identified by any of the lexicons. The sentiment-bearing status of these keywords for this use case is thus doubtful. Conclusions Our findings indicate that these 6 sentiment lexicons are not optimal for use in suicide risk assessment. We propose a set of guidelines for the creation of more suitable lexical resources for distinguishing suicide-related from non–suicide-related EHR texts.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3