A Natural Language Processing–Based Virtual Patient Simulator and Intelligent Tutoring System for the Clinical Diagnostic Process: Simulator Development and Case Study

Author:

Furlan RaffaelloORCID,Gatti MauroORCID,Menè RobertoORCID,Shiffer DanaORCID,Marchiori ChiaraORCID,Giaj Levra AlessandroORCID,Saturnino VincenzoORCID,Brunetta EnricoORCID,Dipaola FrancaORCID

Abstract

Background Shortage of human resources, increasing educational costs, and the need to keep social distances in response to the COVID-19 worldwide outbreak have prompted the necessity of clinical training methods designed for distance learning. Virtual patient simulators (VPSs) may partially meet these needs. Natural language processing (NLP) and intelligent tutoring systems (ITSs) may further enhance the educational impact of these simulators. Objective The goal of this study was to develop a VPS for clinical diagnostic reasoning that integrates interaction in natural language and an ITS. We also aimed to provide preliminary results of a short-term learning test administered on undergraduate students after use of the simulator. Methods We trained a Siamese long short-term memory network for anamnesis and NLP algorithms combined with Systematized Nomenclature of Medicine (SNOMED) ontology for diagnostic hypothesis generation. The ITS was structured on the concepts of knowledge, assessment, and learner models. To assess short-term learning changes, 15 undergraduate medical students underwent two identical tests, composed of multiple-choice questions, before and after performing a simulation by the virtual simulator. The test was made up of 22 questions; 11 of these were core questions that were specifically designed to evaluate clinical knowledge related to the simulated case. Results We developed a VPS called Hepius that allows students to gather clinical information from the patient’s medical history, physical exam, and investigations and allows them to formulate a differential diagnosis by using natural language. Hepius is also an ITS that provides real-time step-by-step feedback to the student and suggests specific topics the student has to review to fill in potential knowledge gaps. Results from the short-term learning test showed an increase in both mean test score (P<.001) and mean score for core questions (P<.001) when comparing presimulation and postsimulation performance. Conclusions By combining ITS and NLP technologies, Hepius may provide medical undergraduate students with a learning tool for training them in diagnostic reasoning. This may be particularly useful in a setting where students have restricted access to clinical wards, as is happening during the COVID-19 pandemic in many countries worldwide.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3