Improving the Prediction of Persistent High Health Care Utilizers: Retrospective Analysis Using Ensemble Methodology

Author:

Howson Stephanie NORCID,McShea Michael JORCID,Ramachandran RaghavORCID,Burkom Howard SORCID,Chang Hsien-YenORCID,Weiner Jonathan PORCID,Kharrazi HadiORCID

Abstract

Background A small proportion of high-need patients persistently use the bulk of health care services and incur disproportionate costs. Population health management (PHM) programs often refer to these patients as persistent high utilizers (PHUs). Accurate PHU prediction enables PHM programs to better align scarce health care resources with high-need PHUs while generally improving outcomes. While prior research in PHU prediction has shown promise, traditional regression methods used in these studies have yielded limited accuracy. Objective We are seeking to improve PHU predictions with an ensemble approach in a retrospective observational study design using insurance claim records. Methods We defined a PHU as a patient with health care costs in the top 20% of all patients for 4 consecutive 6-month periods. We used 2013 claims data to predict PHU status in next 24 months. Our study population included 165,595 patients in the Johns Hopkins Health Care plan, with 8359 (5.1%) patients identified as PHUs in 2014 and 2015. We assessed the performance of several standalone machine learning methods and then an ensemble approach combining multiple models. Results The candidate ensemble with complement naïve Bayes and random forest layers produced increased sensitivity and positive predictive value (PPV; 49.0% and 50.3%, respectively) compared to logistic regression (46.8% and 46.1%, respectively). Conclusions Our results suggest that ensemble machine learning can improve prediction of care management needs. Improved PPV implies reduced incorrect referral of low-risk patients. With the improved sensitivity/PPV balance of this approach, resources may be directed more efficiently to patients needing them most.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3