Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey

Author:

Aggarwal RaviORCID,Farag SomaORCID,Martin GuyORCID,Ashrafian HutanORCID,Darzi AraORCID

Abstract

Background Considerable research is being conducted as to how artificial intelligence (AI) can be effectively applied to health care. However, for the successful implementation of AI, large amounts of health data are required for training and testing algorithms. As such, there is a need to understand the perspectives and viewpoints of patients regarding the use of their health data in AI research. Objective We surveyed a large sample of patients for identifying current awareness regarding health data research, and for obtaining their opinions and views on data sharing for AI research purposes, and on the use of AI technology on health care data. Methods A cross-sectional survey with patients was conducted at a large multisite teaching hospital in the United Kingdom. Data were collected on patient and public views about sharing health data for research and the use of AI on health data. Results A total of 408 participants completed the survey. The respondents had generally low levels of prior knowledge about AI. Most were comfortable with sharing health data with the National Health Service (NHS) (318/408, 77.9%) or universities (268/408, 65.7%), but far fewer with commercial organizations such as technology companies (108/408, 26.4%). The majority endorsed AI research on health care data (357/408, 87.4%) and health care imaging (353/408, 86.4%) in a university setting, provided that concerns about privacy, reidentification of anonymized health care data, and consent processes were addressed. Conclusions There were significant variations in the patient perceptions, levels of support, and understanding of health data research and AI. Greater public engagement levels and debates are necessary to ensure the acceptability of AI research and its successful integration into clinical practice in future.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3