Acceptability of an mHealth App for Monitoring Perinatal and Postpartum Mental Health: Qualitative Study With Women and Providers

Author:

Varma Deepthi SORCID,Mualem MayaORCID,Goodin AmieORCID,Gurka Kelly KORCID,Wen Tony Soo-TungORCID,Gurka Matthew JORCID,Roussos-Ross KayORCID

Abstract

Background Up to 15% of pregnant and postpartum women commonly experience undiagnosed and untreated mental health conditions, such as depression and anxiety, which may result in serious health complications. Mobile health (mHealth) apps related to mental health have been previously used for early diagnosis and intervention but not among pregnant and postpartum women. Objective This study aims to assess the acceptability of using mHealth to monitor and assess perinatal and postpartum depression and anxiety. Methods Focus group discussions with pregnant and postpartum women (n=20) and individual interviews with health care providers (n=8) were conducted to inform the acceptability of mHealth and determine its utility for assessing perinatal and postpartum mood symptoms. Participants were recruited via purposive sampling from obstetric clinics and the surrounding community. A semistructured interview guide was developed by an epidemiologist with qualitative research training in consultation with an obstetrician. The first author conducted all focus group discussions and provider interviews either in person or via Zoom (Zoom Video Communications, Inc) depending on the COVID-19 protocol that was in place during the study period. All interviews were audio recorded with consent; transcribed; and uploaded for coding to ATLAS.ti 8 (ATLAS.ti Scientific Software Development Gmb H), a qualitative data analysis and retrieval software. Data were analyzed using the deductive content analysis method using a set of a priori codes developed based on the interview guide. Methodological rigor and quality were ensured by adopting a systematic approach during the implementation, data collection, data analysis, and reporting of the data. Results Almost all women and providers had downloaded and used at least 1 health app. The respondents suggested offering short questions in layperson language that could be understood by women of all educational levels and offering no more than 2 to 3 assessments per day at preferred timings decided by the women themselves. They also suggested that the women themselves receive the alerts first, with other options being family members, spouses, or friends if the women themselves did not respond within 24 to 72 hours. Customization and snooze features were strongly endorsed by women and providers to improve acceptability and utility. Women mentioned competing demands on their time during the postpartum period, fatigue, privacy, and the security of mental health data as concerns. Health care professionals highlighted the long-term sustainability of app-based mood assessment and monitoring as an important challenge. Conclusions The findings from this study show that mHealth would be acceptable to pregnant and postpartum women for monitoring mood symptoms. This could inform the development of clinically meaningful and inexpensive tools for facilitating the continuous monitoring of, the early diagnosis of, and an early intervention for mood disorders in this vulnerable population.

Publisher

JMIR Publications Inc.

Subject

Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3