Use of Multiple Correspondence Analysis and K-means to Explore Associations Between Risk Factors and Likelihood of Colorectal Cancer: Cross-sectional Study

Author:

Florensa DídacORCID,Mateo-Fornés JordiORCID,Solsona FrancescORCID,Pedrol Aige TeresaORCID,Mesas Julió MiquelORCID,Piñol RamonORCID,Godoy PereORCID

Abstract

Background Previous works have shown that risk factors are associated with an increased likelihood of colorectal cancer. Objective The purpose of this study was to detect these associations in the region of Lleida (Catalonia) by using multiple correspondence analysis (MCA) and k-means. Methods This cross-sectional study was made up of 1083 colorectal cancer episodes between 2012 and 2015, extracted from the population-based cancer registry for the province of Lleida (Spain), the Primary Care Centers database, and the Catalan Health Service Register. The data set included risk factors such as smoking and BMI as well as sociodemographic information and tumor details. The relations between the risk factors and patient characteristics were identified using MCA and k-means. Results The combination of these techniques helps to detect clusters of patients with similar risk factors. Risk of death is associated with being elderly and obesity or being overweight. Stage III cancer is associated with people aged ≥65 years and rural/semiurban populations, while younger people were associated with stage 0. Conclusions MCA and k-means were significantly useful for detecting associations between risk factors and patient characteristics. These techniques have proven to be effective tools for analyzing the incidence of some factors in colorectal cancer. The outcomes obtained help corroborate suspected trends and stimulate the use of these techniques for finding the association of risk factors with the incidence of other cancers.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3