Identity Threats as a Reason for Resistance to Artificial Intelligence: Survey Study With Medical Students and Professionals

Author:

Jussupow EkaterinaORCID,Spohrer KaiORCID,Heinzl ArminORCID

Abstract

Background Information systems based on artificial intelligence (AI) have increasingly spurred controversies among medical professionals as they start to outperform medical experts in tasks that previously required complex human reasoning. Prior research in other contexts has shown that such a technological disruption can result in professional identity threats and provoke negative attitudes and resistance to using technology. However, little is known about how AI systems evoke professional identity threats in medical professionals and under which conditions they actually provoke negative attitudes and resistance. Objective The aim of this study is to investigate how medical professionals’ resistance to AI can be understood because of professional identity threats and temporal perceptions of AI systems. It examines the following two dimensions of medical professional identity threat: threats to physicians’ expert status (professional recognition) and threats to physicians’ role as an autonomous care provider (professional capabilities). This paper assesses whether these professional identity threats predict resistance to AI systems and change in importance under the conditions of varying professional experience and varying perceived temporal relevance of AI systems. Methods We conducted 2 web-based surveys with 164 medical students and 42 experienced physicians across different specialties. The participants were provided with a vignette of a general medical AI system. We measured the experienced identity threats, resistance attitudes, and perceived temporal distance of AI. In a subsample, we collected additional data on the perceived identity enhancement to gain a better understanding of how the participants perceived the upcoming technological change as beyond a mere threat. Qualitative data were coded in a content analysis. Quantitative data were analyzed in regression analyses. Results Both threats to professional recognition and threats to professional capabilities contributed to perceived self-threat and resistance to AI. Self-threat was negatively associated with resistance. Threats to professional capabilities directly affected resistance to AI, whereas the effect of threats to professional recognition was fully mediated through self-threat. Medical students experienced stronger identity threats and resistance to AI than medical professionals. The temporal distance of AI changed the importance of professional identity threats. If AI systems were perceived as relevant only in the distant future, the effect of threats to professional capabilities was weaker, whereas the effect of threats to professional recognition was stronger. The effect of threats remained robust after including perceived identity enhancement. The results show that the distinct dimensions of medical professional identity are affected by the upcoming technological change through AI. Conclusions Our findings demonstrate that AI systems can be perceived as a threat to medical professional identity. Both threats to professional recognition and threats to professional capabilities contribute to resistance attitudes toward AI and need to be considered in the implementation of AI systems in clinical practice.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3