Integrating Multiple Inputs Into an Artificial Pancreas System: Narrative Literature Review

Author:

Hettiarachchi ChirathORCID,Daskalaki ElenaORCID,Desborough JaneORCID,Nolan Christopher JORCID,O’Neal DavidORCID,Suominen HannaORCID

Abstract

Background Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS), are being investigated. Objective The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved systems to enhance the quality of life of people with T1D. Methods A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1, 2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed. Results Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials. Conclusions The integration of additional physiological signals with continuous glucose level monitoring has the potential to optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS. However, it is important to further evaluate the practical complexities and psychosocial aspects associated with such systems in real life.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics,Computer Science Applications,Biomedical Engineering,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3