Antifungal effect of a metabolite of Pseudomonas aeruginosa LV strain on azole-resistant Candida albicans
-
Published:2024-08-12
Issue:
Volume:61
Page:eUJ4662
-
ISSN:2318-0579
-
Container-title:Revista Uningá
-
language:
-
Short-container-title:Rev. Uningá
Author:
Moreira Caroline LucioORCID, Bartolomeu-Gonçalves GuilhermeORCID, Silva-Rodrigues GislaineORCID, Simionato Ane StéfanoORCID, Nakamura Celso VataruORCID, Rodrigues Marcus Vinicius PimentaORCID, Andrade GaldinoORCID, Reis Tavares EliandroORCID, Yamauchi Lucy MegumiORCID, Yamada-Ogatta Sueli FumieORCID
Abstract
Candida albicans remains the most common agent of candidiasis worldwide. This yeast is generally sensitive to most antifungals, however, the emergence of azole-resistant C. albicans has been reported. In addition, this microorganism can form biofilms on various surfaces, making it difficult to treat infections. In this study, the effect of secondary metabolites of Pseudomonas aeruginosa strain LV on planktonic and sessile cells of C. albicans, with different genotypes and susceptibility profile to fluconazole and voriconazole, was evaluated. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the semi-purified fraction F4a ranged from 1.56 to 6.25 μg/mL and 6.25 to 25 μg/mL, respectively. Fluopsin C appears to be the antifungal component of F4a. The semi-purified fraction and fluopsin C showed fungicidal activity, dose and time dependent. F4a caused severe damage to the morphology and ultrastructure of planktonic fungal cells, and significantly reduced the viability of 24-hour biofilms, with MIC for sessile cells from 12.5 to 25.0 μg/mL. However, cytotoxicity was detected in mammalian cells for F4a and fluopsin C at concentrations that showed antifungal activity. These results indicate that fluopsin C may be a prototype for the development of new antifungals for C. albicans.
Reference40 articles.
1. Afonso, L., Andreata, M. F. D. L., Chryssafidis, A. L., Alarcon, S. F., Neves, A. P. das., Silva, J. V. F. R. da., & Andrade, G. (2022). Fluopsin C: a review of the antimicrobial activity against Phytopathogens. Agronomy, 12(12), p. 2997. doi: 10.3390/agronomy12122997 2. Alves de Lima, L. V., Silva, M. F. da., Concato, V. M., Rondina, D. B. L., Zanetti, T. A., Felicidade, I., & Mantovani, M. S. (2022). DNA damage and reticular stress in cytotoxicity and oncotic cell death of MCF-7 cells treated with fluopsin C. Journal of Toxicology and Environmental Health A, 85(21), pp. 896-911. doi: 10.1080/15287394.2022.2108950 3. Atiencia-Carrera, M. B., Cabezas-Mera, F. S., Tejera, E., & Machado, A. (2022). Prevalence of biofilms in Candida spp. bloodstream infections: a meta-analysis. PLoS One, 17(2), p. e0263522. doi: 10.1371/journal.pone.0263522 4. Bansal, H., Singla, R. K., Behzad, S., Chopra, H., Grewal, A. S., & Shen, B. (2021). Unleashing the potential of microbial natural products in drug discovery: focusing on streptomyces as antimicrobials goldmine. Current Topics in Medicinal Chemistry, 21(26), pp. 2374-2396. doi: 10.2174/1568026621666210916170110 5. Barry, L. A., Craig, W. A., Nadler, H., Reller, L. B., Sanders, C. C., & Swenson, J. M. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline. National Committee for Clinical Laboratory Standards.
|
|