Abstract
The use of online banking and credit card is increasing day by day. As the usage of credit/debit card or netbanking is increasing, the possibility of many fraud activities is also increasing. There are many incidents are happened in presently where because of lack of knowledge the credit card users are sharing their personal details, card details and one time password to a unknown fake call. And the result will be fraud happened with the account. Fraud is the problem that it is very difficult to trace the fraud person if he made call from a fake identity sim or call made by some internet services. So in this research some supervised methodologies and algorithms are used to detect fraud which gives approximate accurate results. The illegal or fraud activities put very negative impact on the business and customers loose trust on the company. It also affects the revenue and turnover of the company. In this research isolation forest algorithm is applied for classification to detect the fraud activities and the data sets are collected from the professional survey organizations.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献