HAMM: A Hybrid Algorithm of Min-Min and Max-Min Task Scheduling Algorithms in Cloud Computing

Author:

Abstract

Nowadays, with the huge development of information and computing technologies, the cloud computing is becoming the highly scalable and widely computing technology used in the world that bases on pay-per-use, remotely access, Internet-based and on-demand concepts in which providing customers with a shared of configurable resources. But, with the highly incoming user’s requests, the task scheduling and resource allocation are becoming major requirements for efficient and effective load balancing of a workload among cloud resources to enhance the overall cloud system performance. For these reasons, various types of task scheduling algorithms are introduced such as traditional, heuristic, and meta-heuristic. A heuristic task scheduling algorithms like MET, MCT, Min-Min, and Max-Min are playing an important role for solving the task scheduling problem. This paper proposes a new hybrid algorithm in cloud computing environment that based on two heuristic algorithms; Min-Min and Max-Min algorithms. To evaluate this algorithm, the Cloudsim simulator has been used with different optimization parameters; makespan, average of resource utilization, load balancing, average of waiting time and concurrent execution between small length tasks and long size tasks. The results show that the proposed algorithm is better than the two algorithms Min-Min and Max-Min for those parameters

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resource Utilization Based on Hybrid WOA-LOA Optimization with Credit Based Resource Aware Load Balancing and Scheduling Algorithm for Cloud Computing;Journal of Grid Computing;2024-07-25

2. Intra-Datacenter Load Balancing in a Federated Cloud with Throttled Algorithm;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

3. Genetic-Based Algorithm for Task Scheduling in Fog–Cloud Environment;Journal of Network and Systems Management;2023-10-25

4. Bi-Objective Task Scheduling Based on Heuristic Initialization of the Jellyfish Search Algorithm in Cloud Computing;2023 3rd International Scientific Conference of Engineering Sciences (ISCES);2023-05-03

5. Reinforcement Learning to Improve Resource Scheduling and Load Balancing in Cloud Computing;SN Computer Science;2023-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3