Topic Modeling Based Extractive Text Summarization

Author:

Abstract

Text summarization is an approach for identifying important information present within text documents. This computational technique aims to generate shorter versions of the source text, by including only the relevant and salient information present within the source text. In this paper, we propose a novel method to summarize a text document by clustering its contents based on latent topics produced using topic modeling techniques and by generating extractive summaries for each of the identified text clusters. All extractive sub-summaries are later combined to generate a summary for any given source document. We utilize the lesser used and challenging WikiHow dataset in our approach to text summarization. This dataset is unlike the commonly used news datasets which are available for text summarization. The well-known news datasets present their most important information in the first few lines of their source texts, which make their summarization a lesser challenging task when compared to summarizing the WikiHow dataset. Contrary to these news datasets, the documents in the WikiHow dataset are written using a generalized approach and have lesser abstractedness and higher compression ratio, thus proposing a greater challenge to generate summaries. A lot of the current state-of-the-art text summarization techniques tend to eliminate important information present in source documents in the favor of brevity. Our proposed technique aims to capture all the varied information present in source documents. Although the dataset proved challenging, after performing extensive tests within our experimental setup, we have discovered that our model produces encouraging ROUGE results and summaries when compared to the other published extractive and abstractive text summarization models

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TxLASM: A novel language agnostic summarization model for text documents;Expert Systems with Applications;2024-03

2. Enhanced Sentiment Analysis and Topic Modeling During the Pandemic Using Automated Latent Dirichlet Allocation;IEEE Access;2024

3. Comparative Study of Clustering Techniques for Extractive Text Summarization;Lecture Notes in Networks and Systems;2024

4. An Extensive Survey on Investigation Methodologies for Text Summarization;Indian Journal of Signal Processing;2023-11-30

5. Abstractive Text Summarization Using BERT for Feature Extraction and Seq2Seq Model for Summary Generation;2023 International Conference on Modeling & E-Information Research, Artificial Learning and Digital Applications (ICMERALDA);2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3