Abstract
Frauds in Financial Payment Services are the most prevalent form of cybercrime. The increased growth in e-commerce and mobile payments in recent years is behind the rising incidence of fraud in financial payment services. According to "McKinsey, fraud losses throughout the world could be close to $44 billion by 2025." Every year, fraudulent card transactions causes billions of US Dollar of loss. To reduce these losses, designing effective fraud detection algorithms is essential, which depend on sophisticated machine learning methods to help investigators in fraud. For banks and financial institutions, therefore, fraud detection systems have gained excellent significance. Though the fake transactions are very low when compared to genuine transaction, care must be taken to predict it so that the financial institutions can maintain the customer integrity. As fraud is unlikely to occur compared to normal operations, we have the class imbalance problem. We applied Synthetic Minority Oversampling TEchnique (SMOTE) and the Ensemble of sampling methods(Balanced Random Forest Classifier, Balanced Bagging Classifier, Easy Ensemble Classifier, RUS Boost) to Ensemble machine learning algorithms Performance assessment using sensitivity, specificity, precision, ROC area. The purpose of this article is to analyze different predictive models to see how precise they are to detect whether a transaction is a standard payment or a fraud. Instead of misclassifying a real transaction as fraud, this model seeks to improve detection of fraud. We noted that the technique of Ensemble learning using Maximum voting detects the fraud better than other classifiers. Decision Tree Classifier, Logistic Regression, Balanced Bagging classifier is combined and the proposed algorithm is OptimizedEnsembleFD Algorithm. The sample size is increased and deep learning is applied .It is found that the proposed system Smote Regularised Deep Autoencoders (SRD Autoencoders) neural network performs better with good recall and accuracy for this large dataset.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detecting Mobile Payment Fraud: Leveraging Machine Learning for Rapid Analysis;2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS);2023-11-21