Author:
Dara Dr. Raju, ,Reddy *Dr. T. Raghunadha,
Abstract
The internet is increasing exponentially with textual content primarily through social websites. The problems were also increasing with anonymous textual data in the internet. The researchers are searching for alternative techniques to know the author of an unknown document. Authorship Attribution is one such technique to predict the details of an unknown document. The researchers extracted various classes of stylistic features like character, lexical, syntactic, structural, content and semantic features to distinguish the authors writing style. In this work, the experiment performed with most frequent content specific features, n-grams of character, word and POS tags. A standard dataset is used for experimentation and identified that the combination of content based and n-gram features achieved best accuracy for prediction of author. Two standard classification algorithms were used for author prediction. The Random forest classifier attained best accuracy for prediction of author when compared with Naïve Bayes Multinomial classifier. The achieved results were good compared to many existing solutions to the Authorship Attribution.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献