Abstract
The study presented herein explores the groundbreaking utilization of aquasomes, which are sophisticated colloidal ceramic carbohydrate composites, as carriers for the transportation of hemoglobin. These aquasomes undergo strategic surface modification with carbohydrates, leading to the development of a protective molecular layer characterized by a resilient glassy texture. This innovative approach effectively safeguards therapeutic proteins by forming a molecular shield, thus mitigating potential structural damage during transit. Crucially, aquasomes demonstrate remarkable efficacy in preserving encapsulated drugs within aqueous environments. This is achieved by shielding the drugs from the adverse effects of fluctuating pH levels and temperature variations, which could otherwise induce denaturation. Importantly, the protective capability of aquasomes remains intact, exhibiting no alterations in swelling or porosity despite changes in external conditions.
Furthermore, this article sheds light on recent breakthroughs in aquasomes research, highlighting their diverse applications and promising future avenues. In particular, the focus is on the use of aquasomes for the transport of hemoglobin and therapeutic proteins, underscoring their potential transformative impact in the field of biomedical sciences. The incorporation of aquasomes as carriers for hemoglobin transportation represents a significant advancement in drug delivery technology. By harnessing the unique properties of aquasomes, researchers have opened up new possibilities for the safe and efficient transport of therapeutic proteins, offering hope for the development of novel treatments for a range of medical conditions. Overall, this study underscores the immense potential of aquasomes in revolutionizing biomedical research and improving patient outcomes.
Publisher
Innovare Academic Sciences Pvt Ltd