MODIFIED CYCLODEXTRIN-BASED THERMOSENSITIVE IN SITU GEL FOR VORICONAZOLE OCULAR DELIVERY AGAINST FUNGAL KERATITIS

Author:

SAMPATHI SUNITHA,MADDUKURI SRAVYAORCID,RAMAVATH RAMDAS,DODOALA SUJATHA,KUCHANA VIJAYA

Abstract

Objective: Fungal keratitis is a severe corneal infection. The present study aims to design and formulate an inclusion complex of Voriconazole-Sulfobutyl ether-beta-cyclodextrin (V-SBECD) loaded thermosensitive in-situ gel to improve solubility, therapy efficacy, durability and reduce the dose-related side effect. Methods: Poloxamer 407, a thermosensitive polymer along with hydroxypropyl methylcellulose (HPMC E 15), were used as gelling agents; the formulations with poloxamer (16% w/v) and HPMC E15 (1 and 1.5 % w/v) led to a consistent in-situ gel at 37 °C. The formulations were evaluated for drug content, pH, gelation temperature, viscosity, sterility test, antifungal studies, and cell lines studies. Results: The molar ratio of the drug to SBECD (1:3), showing 42-fold increase in solubility, was chosen to prepare the inclusion complexes using the lyophilization method. The stability constant was found to be 721-m. ATIR peaks, DSC thermograms and NMR spectra indicate the inclusion behavior of Voriconazole and SBECD. In vitro and ex-vivo studies demonstrated that optimized formulation sustained the drug release for over 12 h. Cellular cytotoxicity on Human corneal epithelial cells showed that V-SBECD formulations do not cause corneal epithelial damage after 24 h. In-situ gel and marketed formulation have shown a markable reduction in the growth of the Aspergillus Niger. The optimized SBECD-loaded in-situ gel formulation (F10) did not vary significantly in pH, drug content, viscosity, and % cumulative drug release, signifying stable formulations when tested at 4, 25, and 40 °C. Conclusion: The research findings envisaged V-SBECD in-situ gel formulation as a concrete strategy to treat severe fungal keratitis.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3