Segmentation of Human Brain Gliomas Tumour Images using U-Net Architecture with Transfer Learning

Author:

Alali Assalah Zaki,Hussein Ali Khawla

Abstract

The complexity of segmenting a brain tumour is critical in medical image processing. Treatment options and patient survival rates can only be improved if brain tumours can be prevented and treated. Segmentation of the brain is the most complex and time-consuming task to diagnose cancer utilizing a manual approach for numerous magnetic resonance images (MRI). The aim of MRI brain tumour image segmentation that to build an automated magnetic resonance imaging tumour segmentation system with separate the area of tumour and provided a clear boundary of the tumour region. U-Nets with different transfer learning models as backbones are presented in this paper, there are ResNet50, DenseNet169 and EfficientNet-B7. Brain lesion segmentation is performed using the multimodal brain tumor segmentation challenge 2020 dataset (BraTS2020). Based on MRI scans of the brain, the tumor segmentation technique is assessed using F1-score, Dice loss, and intersection over union score (IoU). The U-Net encoder used with EfficientNet-B7 outperforms all other architectures in terms of performance metrics across the board. Overall, the results of this experiment are rather excellent. The Dice-loss score was 0.009435, and the score of IoU was 0.7435, F1-score was 0.9848, accuracy was 0.9924, precision was 0.9829, recall was 0.9868, and specificity was 0.9943. The U-Net with EfficientNet-B7 architecture was shown to be crucial in the treatment of brain tumors, according to the findings of the experiments

Publisher

University of Diyala, College of Science

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3