Major Histocompatibility Complex (MHC) Class I Gene Expression in Single Neurons of the Central Nervous System: Differential Regulation by Interferon (IFN)-γ and Tumor Necrosis Factor (TNF)-α

Author:

Neumann H.1,Schmidt H.1,Cavalié A.1,Jenne D.1,Wekerle H.1

Affiliation:

1. From the Department of Neuroimmunology, Max-Planck-Institute for Psychiatry, D-82152 Martinsried, Germany

Abstract

This study examined the effect of the pro-inflammatory cytokines interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) on the induction of MHC class I–related genes in functionally mature brain neurons derived from cultures of dissociated rat hippocampal tissue. Patch clamp electrophysiology combined with single cell RT-PCR demonstrated that ∼50% of the untreated neurons contained mRNA for MHC class I heavy chains, while, with few exceptions, the cells failed to transcribe β2-microglobulin and TAP1/TAP2 gene transcripts. No constitutive expression of MHC class I protein was detectable by confocal laser microscopy on the surface of neurons. All neurons transcribed the α-chain of the interferon-type II receptor (binding IFN-γ) along with the p55 receptor for TNF-α. Sustained exposure to IFN-γ resulted in transcription of β2microglobulin and TAP1/TAP2 genes and MHC class I surface expression in a minor part of the neurons, but did not alter their electrophysiological activities as assessed by whole cell electrophysiology. Suppression of neuronal electric activity by the sodium channel blocker tetrodotoxin drastically increased to almost 100% IFN-γ-mediated induction of MHC class I chains, of both TAP transporters, and of membrane expression of MHC class I protein. The effect of tetrodotoxin is at least partly reverted by the neurotransmitter glutamate. In contrast to IFN-γ, treatment with TNF-α did neither upregulate TAP1/TAP2 nor β2microglobulin gene expression, but induced MHC class I heavy chain gene transcription in all neurons. Consequently, no MHC class I molecules were detectable on the membranes of TNF-α-treated neurons.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3