Highly Conserved Neisseria meningitidis Surface Protein Confers Protection against Experimental Infection

Author:

Martin Denis1,Cadieux Nathalie1,Hamel Josée1,Brodeur Bernard R.1

Affiliation:

1. From Unité de Recherche en Vaccinologie, Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Ste-Foy, Québec, Canada, G1V 4G2

Abstract

A new surface protein, named NspA, which is distinct from the previously described Neisseria meningitidis outer membrane proteins was identified. An NspA-specific mAb, named Me-1, reacted with 99% of the meningococcal strains tested indicating that the epitope recognized by this particular mAb is widely distributed and highly conserved. Western immunoblotting experiments indicated that mAb Me-1 is directed against a protein band with an approximate molecular mass of 22,000, but also recognized a minor protein band with an approximate molecular mass of 18,000. This mAb exhibited bactericidal activity against four meningococcal strains, two isolates of serogroup B, and one isolate from each serogroup A and C, and passively protected mice against an experimental infection. To further characterize the NspA protein and to evaluate the protective potential of recombinant NspA protein, the nspA gene was identified and cloned into a low copy expression vector. Nucleotide sequencing of the meningococcal insert revealed an ORF of 525 nucleotides coding for a polypeptide of 174 amino acid residues, with a predicted molecular weight of 18,404 and a isoelectric point of 9.93. Three injections of either 10 or 20 μg of the affinity-purified recombinant NspA protein efficiently protected 80% of the mice against a meningococcal deadly challenge comparatively to the 20% observed in the control groups. The fact that the NspA protein can elicit the production of bactericidal and protective antibodies emphasize its potential as a vaccine candidate.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3